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Abstract

Technological uncertainty (TU) arises whenever the effects of risk mitigation depend

on exogenous factors or are subjectively perceived to be uncertain. It is a widespread

condition in decision-making under risk and uncertainty. We study the effects of TU on

self-insurance and self-protection. TU reduces the willingness to pay for self-insurance

and has no effect on that for self-protection. Its impact on the optimal demand for both

activities is jointly determined by the decision-maker’s preferences and risk reduction ef-

fectiveness. We identify conditions for TU, FSD improvements and increases of TU to have

unambiguous comparative statics. These conditions involve prudence, relative risk aver-

sion, and relative prudence. We highlight cases where TU raises the optimal investment

consistent with the precautionary principle. Our theory is rich in empirical predictions

and our results have implications in the areas of safety, loss control, insurance demand

under nonperformance risk, and climate change.
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Optimal Risk Reduction under TU

1 Introduction

Risk-averse people dislike risk and may benefit from risk mitigation. Economists commonly

assume that the benefits of risk mitigation are precisely known at the time a decision is made.

While entailing tractability, this assumption is hardly justifiable and diminishes the normative

and descriptive value of existing analyses. We argue in this paper that many, if not all forms

of risk reduction are characterized by technological uncertainty because the benefits are only

imperfectly known by the decision-maker.1

For example, the effectiveness of crime-prevention expenditures for one’s home might cri-

tically depend on the future development of the neighborhood. A sprinkler system might

operate more or less reliably when a fire breaks out (see Briys et al., 1991). The benefits of

climate change mitigation depend on a variety of environmental factors, over which there is

considerable scientific disagreement; as illustrated by, in part, strongly differing predictions

from various climate models (see Berger et al., 2016). In insurance, nonperformance risk is

a model example for technological uncertainty (see Doherty and Schlesinger, 1990; Peter and

Ying, 2016; Bourgeon and Picard, 2014); it refers to the uncertainty whether and to what

extent the insurer will honor its indemnity promise in case of a loss and is a central concern

of insurance regulation. Even when environmental factors are irrelevant for the benefits of

risk reduction, individuals might simply perceive them as uncertain. Possible reasons include

a lack of, inattention to, or ignorance of information (see Golman et al., 2017). Behavioral

factors such as lack of confidence or sophistication (see Neumuller and Rothschild, 2017; Li

et al., 2018) or limited financial literacy (see Lusardi and Mitchell, 2011) may also contri-

bute to technological uncertainty. We provide the first systematic analysis of the effects of

technological uncertainty on risk mitigation.

Ehrlich and Becker (1972) introduced the distinction between self-insurance and self-

protection.2 Self-insurance or loss reduction refers to a costly activity that reduces the size

of loss, whereas self-protection or loss prevention refers to a costly activity that reduces the

probability of loss.3 Each form of risk mitigation reduces the expected loss, but besides

1 The usage of the term technological uncertainty has been used differently in other fields. In the management
literature, it often describes the uncertainty associated with a firm’s application of knowledge or skills in its
product or service development (see Song and Montoya-Weiss, 2001; Fleming, 2001; MacMinn and Holtmann,
1983). Some studies in environmental economics use technological uncertainty to refer to the random arrival
time of future technological progress (see Dasgupta and Stiglitz, 1981; Fuss and Szolgayová, 2010)

2 See Courbage et al. (2013) for a recent survey.

3 Footnote 1 in Chiu (2000) or the introduction of Berger (2016) provide many examples of both activities.
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this commonality, there is a broad array of dissimilarities.4 This is why we maintain this

distinction.

The implications of technological uncertainty per se have not been studied yet although

some researchers have conducted comparative statics in the presence of technological un-

certainty. Hiebert (1989) finds that an increase in risk aversion raises the investment in

self-insurance when the loss size is uncertain, but not necessarily when the effectiveness of

self-insurance is random. Similarly, Briys et al. (1991) show that, at an actuarially fair price,

more or less than full coverage can be optimal when market insurance is non-reliable. In

this case, even when a strong increase in risk aversion in the sense of Ross (1981) does not

necessarily increase the demand for insurance or self-insurance. 5 These papers determine

the effect of risk aversion while taking technological uncertainty as given in some parametric

form. We in turn study the dual question and isolate the effects of technological uncertainty

on optimal behavior. We make no parametric assumptions on how technological uncertainty

affects risk reduction but rather identify conditions for unambiguous comparative statics as

part of our analysis.

Another related stream of literature studies risk reduction in the presence of ambiguity.

When probabilities are not uniquely assigned, the benefits of risk reduction are also uncertain.

Relying on the Klibanoff et al. (2005, 2009) framework, Huang (2012) identifies conditions

under which a more ambiguity-averse individual raises her investment to improve her initial

wealth distribution. Alary et al. (2013) determine the effects of ambiguity aversion on the

marginal willingness to pay and the optimal demand for self-insurance and self-protection

in a single-period model, which has been extended to two periods by Berger (2016). Etner

and Spaeter (2010) study prevention of health risks in the presence of complications that

are perceived as ambiguous. They determine conditions under which an increase in am-

biguity aversion raises optimal prevention. Snow (2011) finds that both self-insurance and

self-protection increase with greater ambiguity aversion. His results extend to a probability

weighting model in the spirit of Quiggin (1982).

These papers assume ambiguity and compare the behavior of an ambiguity-neutral and an

ambiguity-averse agent, or more generally vary the agent’s degree of ambiguity aversion. We

show the relevance of technological uncertainty even without assuming behavioral preferences

such as ambiguity aversion. Our results represent the relevant normative benchmark for

4 Ehrlich and Becker (1972) find that self-insurance and market insurance are substitutes whereas self-
protection and market insurance can be substitutes or complements. Dionne and Eeckhoudt (1985) show
that increased risk aversion à la Pratt (1964) increases the demand for self-insurance but may or may not
increase the demand for self-protection. As a result, wealth effects on self-insurance can be directly inferred
from how wealth affects risk aversion (Lee, 2010b), which is not the case for self-protection (Sweeney and
Beard, 1992).

5 Similarly, the relationship between risk aversion and the optimal level of self-insurance is not necessarily
monotonic with more than two states of the world (see Lee, 2010a). However, Eeckhoudt et al. (2017)
showed that a restricted increase in risk aversion leads to unambiguous comparative statics in the case of
insurance with nonperformance risk.
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the effects of technological uncertainty on optimal behavior. Technological uncertainty and

increases in technological uncertainty compromise the attractiveness of risk reduction and

lower the willingness to pay for self-insurance. An FSD improvement, in turn, makes self-

insurance more attractive. In case of self-protection, technological uncertainty and increases

in technological uncertainty do not affect the willingness to pay because expected utility is

linear in probabilities. FSD improvements have the same effect on the willingness to pay for

self-protection – a rare case in which both mechanisms of risk reduction behave similarly (see

Footnote 4).

For the optimal level of self-insurance and self-protection, matters become increasingly

more complex. Technological uncertainty still compromises the effectiveness of self-insurance,

which undermines the propensity of a risk-averse agent to invest in it. On the other hand,

the additional uncertainty constitutes a precautionary motive, which induces a prudent agent

to use more self-insurance. To resolve this trade-off, we identify conditions that allow for

clear predictions on the effects of technological uncertainty and its stochastic changes. These

conditions involve the agent’s preferences including prudence, relative risk aversion, relative

prudence, as well as a variety of elasticity measures that capture how uncertainty operates on

the self-insurance technology. In many cases, we find behavior consistent with the precautio-

nary principle: Being less certain about the future should induce us to do more to mitigate

risk.

Our paper makes several contributions with implications for a variety of settings. We

provide the first systematic analysis of the effects of technological uncertainty on optimal risk

mitigation. Second, we determine conditions on the agent’s preferences and on risk reduction

effectiveness under technological uncertainty that yield clear comparative statics. We thus

derive new hypotheses about the optimal use of self-insurance and self-protection. A lot is

known about the empirical validity of certain preference traits such as prudence or relative

risk aversion, but there is a gap in the empirical literature when it comes to our proposed

technology measures. This motivates their measurement in the lab and in the field. Third,

technological uncertainty can increase or decrease the optimal level of the available activity.

It can thus serve as an explanatory variable in those cases where conventional theories have

a hard time explaining why observed demand for risk mitigation deviates from predicted

demand. Our analysis makes the simple wisdom precise that the benefits of risk reduction are

“in the eye of the observer”, so that differences in behavior can be attributed to heterogeneity

in perception.

2 Willingness to Pay

2.1 Self-Insurance

We consider an agent with a three times differentiable vNM utility function u, which represents

her preferences over consumption. We assume non-satiation and risk aversion, u′ > 0 and
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u′′ < 0, where primes denote derivatives of univariate functions. The agent has initial wealth

of w and faces the risk of losing an amount L < w with probability p ∈ (0, 1). Self-insurance

refers to a decrease in the size of loss from L to L0 with L0 < L. The agent’s willingness to

pay (WTP) to pursue such a change, denoted by v0, is implicitly defined by

(1− p) · u(w) + p · u(w − L) = (1− p) · u(w − v0) + p · u(w − L0 − v0). (1)

Under TU the effect of self-insurance is no longer certain but varies. We represent this by

replacing the reduced loss L0 by L̃1 in Eq (1) with L̃1 < L. Each realization of L̃1 is less than

the initial loss to preserve the meaning of self-insurance. For now we additionally assume

EL̃1 = L0 for the sake of comparability, but relax this later on. In the presence of TU the

WTP for self-insurance, denoted by v1, is defined via

(1− p) · u(w) + p · u(w − L) = (1− p) · u(w − v1) + p · Eu(w − L̃1 − v1). (2)

Throughout the paper, we organize our results around three interrelated questions:

1) What is the effect of TU?

2) What is the effect of a first-order stochastically dominant (FSD) improvement in TU?

3) What is the effect of an increase in TU, modeled as an increase in risk?

We obtain the answer to the first question by comparing a situation with TU to one without.

The second and third question pertain to cases where TU is present but changes, for example

due to a change in environmental conditions, available technologies or the agent’s perception.

The first question is a special case of the third one and allows for simpler conditions.

We summarize the effect of TU on the WTP for self-insurance in the following proposition.

We provide a proof in Appendix A.1.

Proposition 1. TU and an increase in TU reduce the WTP for self-insurance. An FSD

improvement in TU increases the WTP for self-insurance.

TU introduces risk into the agent’s endowment, and an increase in TU increases this

risk. Both changes make the agent worse off due to risk aversion. As a result, self-insurance

increases her welfare by less than if TU was absent. TU therefore compromises the effectiveness

of self-insurance, which is reflected in a lower WTP. On the other hand, an FSD improvement

of TU reduces the expected loss, which is desirable due to monotonicity. So unlike an increase

in TU, an FSD improvement is a favorable change, which explains its positive effect on WTP.6

As we will see in Section 3 the consideration of the optimal level of self-insurance introduces

additional trade-offs.

6 Proposition 1 continues to hold when the initial loss size L0 is random as long as both sources of uncertainty,
the one associated with the initial loss and the one resulting from the technology, are independent.
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2.2 Self-Protection

Self-protection refers to a reduction of the probability of loss from an initial level p to p0

with p0 < p. The size of the loss is unaffected and is given by L independent of the agent’s

engagement in self-protection. Her WTP is defined by

(1− p) · u(w) + p · u(w − L) = (1− p0) · u(w − v0) + p0 · u(w − L− v0). (3)

Under TU the effect of self-protection is no longer certain, which we represent by replacing

p0 with p̃1 in Eq. (3) with p̃1 < p. Each realization of p̃1 is smaller than p to maintain

the meaning of self-protection. As before we assume initially that Ep̃1 = p0 for reasons of

comparability. This results in the following condition for WTP:

(1− p) · u(w) + p · u(w − L) = E {(1− p̃1) · u(w − v1) + p̃1 · u(w − L− v1)} . (4)

Since expected utility is linear in probabilities, TU and increases in TU do not affect the

agent’s WTP for self-protection because they preserve the mean of the loss probability. Only

FSD improvements have non-trivial consequences.

Proposition 2. Neither TU nor an increase in TU affect the WTP for self-protection. An

FSD improvement in TU increases the WTP for self-protection.

We omit the proof for its simplicity. If p̃1 undergoes an FSD improvement, the expected

probability of loss decreases, which makes the agent better off and raises the value of self-

protection.7 For self-protection, any stochastic change that reduces the expected probability

of loss has this effect on WTP whereas any stochastic change that leaves the expected proba-

bility of loss unchanged does not affect WTP. The linearity of expected utility in probability

broadens the set of applicable risk changes because they occur “outside” the utility function.

As we will see in Section 4, the null effect of second-order changes carries over to optimal

demand whereas the first-order effect become more intricate.

Propositions 1 and 2 show that FSD improvements in TU have a positive effect on WTP

for both self-insurance and self-protection. This is a rare occasion in which both mechanisms

of risk reduction have identical comparative statics properties. In many other cases their

economic behavior differs, as we explained in Footnote 4. These differences also prevail in our

model when it comes to the effect of TU and of increases in TU on the WTP.

7 p is the probability of loss, so an improvement is an FSD improvement that lowers the expected loss
probability.
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3 Optimal Demand for Self-Insurance

3.1 Preliminaries

The analysis of WTP provides a “take-it-or-leave-it” perspective on risk reduction: The agent

can either maintain her endowment or switch to a modified situation with lower risk. A more

subtle approach is to study the agent’s optimal demand for risk reduction. This requires her

to trade off costs against benefits to determine an optimal level of the available activity. We

will investigate the role of TU in the agent’s cost-benefit analysis. We first assume that she

can invest in self-insurance to reduce the size of the loss, and denote by y ≥ 0 the level of the

self-insurance activity. We distinguish a monetary (also known as tangible or non-separable)

and a non-monetary (also known as non-tangible or separable) cost of self-insurance.8 In both

cases we denote the cost of self-insurance by c(y), which is assumed to be strictly increasing

and non-concave, c′ > 0 and c′′ ≥ 0.

To introduce TU, we allow the loss size to depend on both y and an exogenous variable

κ ∈ [κ, κ] so that L = L(y, κ). The technology variable κ can represent, among other things,

an environmental factor that is beyond the agent’s control, or lack of information regarding

the effectiveness of self-insurance. For any κ ∈ [κ, κ] we assume that Ly < 0 and Lyy ≥ 0

so that self-insurance reduces the loss size at a decreasing rate for any potential technology.

We also suppose Lκ < 0 so that higher values of κ represent a better technology in the sense

that losses are lower.9 For the cross-derivative we distinguish three cases according to the

following definition.

Definition 1. We speak of:

- Increasing difference (ID) if Lyκ < 0;

- Constant difference (CD) if Lyκ = 0;

- Decreasing difference (DD) if Lyκ > 0.

This terminology is due to Hoy (1989) who uses it for self-protection. We can explain it

by studying the so-called “difference function”: For κ1, κ2 ∈ [κ, κ] with κ1 < κ2, we denote by

δ(y) = L(y, κ1) − L(y, κ2) the difference between the loss size for two different technologies.

How does this difference depend on the level of self-insurance? δ′(y) = Ly(y, κ1)− Ly(y, κ2),

which is uniformly positive (zero, negative) if and only if Lyκ < 0 (= 0, > 0). So the marginal

product of self-insurance increases (stays constant, decreases) as the technology improves

8 Two-period models without saving (e.g., Menegatti, 2009) are a special case of a separable cost function
whereas two-period models with endogenous saving revert to their single-period counterpart with a non-
separable cost, see Peter (2017). So all our results apply to intertemporal models of risk reduction.

9 This assumption is without loss of generality. All our results hold if we assume Lκ > 0 instead so that
higher values of κ imply larger losses. In this case, the signs of the cross-derivatives in Definition 1 need to
be reversed for the definition to remain meaningful.
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Figure 1: Increasing, constant and decreasing difference.
The underlying loss functions are:
- L(y, κ) = l0(1− κh(y)) with l0 = 6, h(y) = 1− e−0.3y and κ ∈ {0.4, 0.7} for ID;
- L(y, κ) = l0(1− h(y)) + 3(1− κ) with l0 = 3, h(y) = 1− e−0.3y and κ ∈ {0.1, 0.7} for CD;
- L(y, κ) = l0(1− κ)(1− h(y)) with l0 = 6, h(y) = 1− e−0.3y and κ ∈ {0.2, 0.7} for DD.

when self-insurance exhibits ID (CD, DD). As illustrated in Figure 1, a given increase in self-

insurance reduces small losses by more than large losses under ID whereas it reduces large

losses by more than small losses under DD. Many would argue for CD and DD to be more

plausible than ID (e.g., Doherty and Posey, 1998; Crainich and Eeckhoudt, 2017) but we will

consider all three possibilities in our analysis. We provide some specific examples from the

literature.

Example 1. Hiebert’s (1989) case of random loss size can be written as L(y, κ) = (1−κ) ·l(y)

in our notation with l′ < 0, l′′ ≥ 0 and κ ∈ (0, 1). Then, Lκ = −l(y) < 0 and Lyκ = −l′ > 0,

so this is an example of DD.

Example 2. Hiebert’s (1989) case of random effectiveness is given by L(y, κ) = l0 ·(1−κh(y))

with l0 > 0, h′ > 0, h′′ ≤ 0 and κ ∈ (0, 1). Then, Ly = −κl0h′ < 0 and Lyκ = −l0h′ < 0, so

this is an example of ID.

Example 3. Briys et al. (1991) study risky self-insurance in the form of L(y, κ) = l(κy) with

l′ < 0, l′′ ≥ 0 and κ ∈ (0, 1). Then, Lκ = yl′ < 0 and Lyκ = l′ + κyl′′ is indeterminate. As a
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result, L can serve as an example of ID, CD or DD depending on the elasticity of the marginal

loss size.10

Hiebert (1989) and Briys et al. (1991) both study the effect of an increase in risk aversion

on optimal behavior while taking TU as given. We will answer the dual question by showing

how TU affects behavior at a given level of risk aversion. For a separable cost, the agent’s

objective function is given by

max
y≥0

U(y) = (1− p)u(w) + p · Eu (w − L(y, κ̃))− c(y), (5)

where the expectation is taken with respect to TU. The associated first-order condition is

U ′(y) = −p · ELy(y, κ̃)u′ (w − L(y, κ̃))− c′(y) = 0, (6)

and we denote the agent’s optimal level of self-insurance by y∗. The second-order condition

is satisfied under the assumptions made. The marginal cost is the disutility of exerting a self-

insurance effort whereas the marginal benefit results from the expected increases of expected

consumption utility due to incurring a lower loss, where the first “expected” refers to the

agent’s beliefs over the productivity of self-insurance. Due to separability only the marginal

benefit of self-insurance is affected by TU whereas its marginal cost is not.

For a non-separable cost we obtain the agent’s objective function as follows:

max
y≥0

U(y) = (1− p)u(w − c(y)) + p · Eu (w − c(y)− L(y, κ̃)) . (7)

The associated first-order condition is

U ′(y) = − p · ELy(y, κ̃)u′ (w − c(y)− L(y, κ̃))

− c′(y)(1− p)u′(w − c(y))− c′(y)p · Eu′ (w − c(y)− L(y, κ̃)) = 0,
(8)

and the second-order condition is satisfied. In the non-separable case both the marginal cost

and the marginal benefit of self-insurance are affected by TU, which will turn out to play a

role for some of our results.

3.2 TU and Optimal Demand for Self-Insurance

In this section, we will determine how TU affects the demand for self-insurance. In other

words, we will provide an answer to question 1) posed in Section 2.1. Based on the analysis

of WTP, we might suspect that TU compromises the attractiveness of self-insurance, thus

lowering demand. On the other hand, TU could raise the investment in self-insurance for

10 If we denote this elasticity as El′,κy = κyl′′(κy)/l′(κy), then L exhibits DD (CD, ID) whenever the marginal
loss is elastic (unit elastic, inelastic), i.e., whenever El′′,κy < −1 (= −1, > −1). CD prevails if l is a negative
affine transformation of the natural logarithm.
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reasons of precaution. Our next proposition solves this tradeoff. The agent’s prudence, defined

as a positive third derivative of utility (Kimball, 1990), is relevant for whether precautionary

behavior prevails.

Proposition 3. TU:

a) Raises the optimal level of self-insurance for a prudent agent under CD and DD.

b) Raises (leaves unchanged, lowers) the optimal level of self-insurance for an agent with

quadratic utility under DD (CD, ID).

c) Lowers the optimal level of self-insurance for an imprudent agent under ID and CD.

u′′′ < 0 u′′′ = 0 u′′′ > 0

ID − − +/−

CD − 0 +

DD +/− + +

Table 1: The effect of TU on the demand for self-insurance

We give a proof in Appendix A.2. Table 1 visualizes the result in Proposition 3. Our

finding does not depend on whether the cost is separable or not. When the agent is prudent

and the technology exhibits non-increasing difference (CD or DD), we find a precautionary

increase in the optimal level of self-insurance to cope with TU. The reverse holds whenever

the agent is imprudent and the technology exhibits non-decreasing difference (CD or ID).

TU may increase or decrease the optimal demand for self-insurance, and the direction of the

effect depends on the combination of the agent’s prudence and how uncertainty affects the

self-insurance technology.

To illustrate our result, we provide a simple numerical example where the agent raises the

level of self-insurance in response to TU. We assume L(y, κ) = (1−κ)l(y) with κ ∈ (0, 1) and

l(y) = l0e
−0.1y (Example 1, DD). We set w = 10, l0 = 6, p = 0.1, and use a separable cost

function, c(y) = 0.005y. Risk preferences are represented by an iso-elastic utility function

u(x) = x1−γ/(1 − γ) with γ = 0.5, so the agent is risk-averse and prudent. We introduce

TU by assuming κ̃ to follow a symmetric beta distribution, denoted by Beta(α, β), with

α = β = 0.01.11 The mean is κ = 0.5, which represents the reference case without TU

because L(y, κ) is linear in κ.12

11 We show in Appendix A.3 how the beta distributions parameterizes first-order and second-order risk changes.
This identification makes it useful for illustrations.

12 We choose all parameters to avoid corner solutions and facilitate illustration. We do not claim these para-
meters to be empirically supported.
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Figure 2 shows expected utility with and without TU. If y0 denotes the agent’s optimal

level of self-insurance in the absence of TU, then her demand for self-insurance increases from

y0 = 7.19 to y∗ = 7.83 when we introduce TU, as predicted by Proposition 3a). This increase

is consistent with the agent’s prudence and the technology exhibiting DD. We also see how

TU reduces expected utility at any level of self-insurance due to risk aversion. The agent is

better off under TU at her new level of self-insurance than if she had maintained the one in

the absence of TU, but she can never be as well off as without TU due to risk aversion.

Figure 2: The effect of TU on the demand for self-insurance. The underlying parameters are L(y, κ) = (1 − κ)l(y)
with l(y) = l0e−0.1y , w = 10, l0 = 6, p = 0.1, a separable cost function of c(y) = 0.005y, and iso-elastic utility
u(x) = x1−γ/(1− γ) with γ = 0.5. κ̃ is distributed according to Beta(0.01, 0.01) with mean κ = 0.5.

We develop the economic intuition behind Proposition 3 for the case of prudence and DD

with a separable cost function. To do so we need to understand how the marginal benefit of

self-insurance is affected by TU. We obtain the following decomposition:

−p · ELy(y, κ̃)u′ (w − L(y, κ̃)) + p · ELy(y, κ̃) · u′ (w − EL(y, κ̃))

= −p · ELy(y, κ̃)u′ (w − L(y, κ̃)) + p · ELy(y, κ̃)Eu′ (w − L(y, κ̃)) (9)

−p · ELy(y, κ̃) · Eu′ (w − L(y, κ̃)) + p · ELy(y, κ̃) · u′ (w − EL(y, κ̃)) .

The last line is a precautionary effect. At a given level of self-insurance, the loss size is random

under TU whereas it is certain in the absence of TU. This consumption uncertainty gives rise

to a precautionary motive, which induces a prudent agent to use self-insurance more in order

to raise her expected consumption as a means of precaution. We reorganize the other terms
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as follows:

−p · ELy(y, κ̃)u′ (w − L(y, κ̃)) + p · ELy(y, κ̃)Eu′ (w − L(y, κ̃))

= −pEu′ (w − L(y, κ̃)) · (Ly(y, κ̃)− ELy(y, κ̃)) (10)

= Cov
(
u′ (w − L(y, κ̃)) ,−pLy(y, κ̃) + pELy(y, κ̃)

)
.

For low values of κ losses are larger, resulting in lower consumption and higher marginal

utility. Under DD, low values of κ correspond to high values of −pLy(y, κ). Consequently, an

additional dollar invested in self-insurance reduces the expected loss by more when marginal

utility is high than when marginal utility is low. This reinforces the use of self-insurance.

We call this a covariance effect because it is driven by how marginal utility covaries with the

expected productivity of self-insurance.

The comparison of Propositions 1 and 3 shows that TU has more subtle effects on optimal

demand than on WTP. While TU always reduces the WTP for self-insurance, it may increase

or decrease the optimal demand for self-insurance, depending on the relative strength of the

precautionary effect and the covariance effect. Take the case of an agent with quadratic

utility; this mutes the precautionary effect so that TU raises self-insurance if and only if the

technology exhibits DD. Similarly, take the case of CD, which mutes the covariance effect;

then TU raises self-insurance if and only if the agent is prudent. We also point out that the

plausible combination of DD and prudence leads to higher levels of self-insurance under TU

whereas WTP is lowered.

Two of the combinations in Table 1 are not conclusive because the precautionary effect and

the covariance effect are conflicting. Under additional assumptions, we can also resolve these

cases. Let P (w) = −wu′′′(w)/u′′(w) denote the agent’s relative prudence and let w`(y, κ) be

shorthand for final wealth in the loss state, that is, w`(y, κ) = w − L(y, κ) in the separable

case and w`(y, κ) = w − c(y) − L(y, κ) in the non-separable case. We obtain the following

remark, which we prove in Appendix A.4.

Remark 1. Assume the cost is separable.

a) For L(y, κ) = (1 − κ) · l(y) with l′ < 0 and l′′ ≥ 0 (Example 1, DD) and an imprudent

agent, TU raises optimal self-insurance if relative prudence is bounded by −2 and losses

do not exceed loss state wealth.

b) For L(y, κ) = l0 · (1 − κh(y)) with h′ > 0 and h′′ ≤ 0 (Example 2, ID) and a prudent

agent, TU lowers optimal self-insurance if relative prudence does not exceed 2.

For a), imprudence leads to a negative precautionary effect whereas DD results in a positive

covariance effect. The bound on relative prudence ensures that the agent is not too imprudent

so that the covariance effect dominates. This is why we obtain an increase in self-insurance.

For b), prudence implies a positive precautionary effect while ID induces a negative covariance
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effect. Prudence is bounded so that the covariance effect dominates, resulting in less self-

insurance.

The assumption that final wealth in the loss state increases in the level of self-insurance

is trivial for separable cost because it is precisely the meaning of self-insurance that losses

are reduced, resulting in higher consumption when a loss happens. Matters are more intri-

cate for a non-separable cost function. In the absence of TU, the same argument applies

as for separable cost. At an optimal level of self-insurance, final wealth in the loss state

must be upward sloping, otherwise self-insurance would not be in demand (see Dionne and

Eeckhoudt, 1985, Eq. (2)). In the presence of TU, the level of self-insurance that is right

“on average” may, however, be too high for some particular technologies so that c′(y) could

possibly preponderate Ly(y, κ) for some values of κ. If it did, final wealth in the loss state

would no longer be uniformly increasing in self-insurance at an optimal choice. This is what

assumption w`y(y
0, κ) > 0 rules out.

3.3 An FSD Improvement in TU

So far, we have contrasted behavior with and without TU. We will now move on to situations

where TU is present but may be subject to change. We first start with an FSD improvement,

corresponding to question 2) posed in Section 2.1. Possible reasons for such a improvement

include the advent of good news about the effectiveness of self-insurance or a technological

improvement in available safety features. It can also identify heterogeneity in the perception of

self-insurance effectiveness between different individuals. Some people may be more optimistic

than others about the impact of their self-insurance efforts, and such differences in perception

will affect their demand behavior.

Technically, we consider an FSD improvement of κ̃. Due to Lκ < 0, this induces an FSD

improvement in the distribution of final wealth in the loss state, making self-insurance less

attractive due to diminishing marginal utility. A second effect arises from the associated

change of the marginal product. To sign it, we introduce an elasticity that measures the

impact of self-insurance on final wealth in the loss state.

Definition 2. Ew`,y(y, κ) = y · w`y(y, κ)/w`(y, κ) denotes the self-insurance elasticity of loss-

state wealth.

The usual interpretation applies. A one percent increase in self-insurance raises final

wealth in the loss state by Ew`,y percent. We also introduce relative risk aversion, defined as

R(w) = −wu′′(w)/u′(w), which is sometimes interpreted as the wealth elasticity of marginal

utility. We are now in a position to formulate our next result.

Proposition 4. Assume w`y(y
∗, κ) > 0. An FSD improvement in TU:

a) Raises optimal self-insurance if relative risk aversion is less than 1 and the self-insurance

elasticity of loss-state wealth is non-decreasing in κ.

13
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b) Raises (leaves unchanged, lowers) optimal self-insurance if relative risk aversion is equal

to 1 and the self-insurance elasticity of loss-state wealth increases (stays constant, de-

creases) in κ.

c) Lowers optimal self-insurance if relative risk aversion exceeds 1 and the self-insurance

elasticity of loss-state wealth is non-increasing in κ.

R < 1 R = 1 R > 1

∂κEw`,y > 0 + + +/−

∂κEw`,y = 0 + 0 −

∂κEw`,y < 0 +/− − −

Table 2: The effect of an FSD improvement of TU on the demand for self-insurance

We provide a proof of Proposition 4 in Appendix A.5. So unlike WTP, which increases for

all risk-averse agents following an FSD improvement in TU (see Proposition 1), the optimal

demand for self-insurance may rise or fall, and Table 2 summarizes the exact conditions in

compact form. The relevant preference criterion is how relative risk aversion compares to

1. Unity as a threshold for relative risk aversion is well established in the literature. Cheng

et al. (1987) and Hadar and Seo (1990) study the effect of an FSD improvement in the return

distribution of a risky asset on portfolio choice. Relative risk aversion below unity then ensures

a larger investment in the risky asset. Eeckhoudt and Schlesinger (2008) analyze the effect of

an FSD improvement in the interest rate on saving. Relative risk aversion then needs to be

bounded by unity for optimal saving to increase.13 The relevant technology criterion is how

the self-insurance elasticity of loss-state wealth changes as the technology improves. We can

connect this criterion to Definition 1. Direct computation reveals that

∂κEw`,y(y, κ) ≤ 0 ⇐⇒ Lyκ(y, κ) ≥
w`y(y, κ)Lκ(y, κ)

w`(y, κ)
. (11)

The right hand side of (11) is negative, so as long as Lyκ(y, κ) ≥ 0 the inequality is satis-

fied. This shows that DD and CD technologies have a self-insurance elasticity of loss-state

wealth that is always decreasing in κ. Then the bottom row of Table 2 applies, and an FSD

improvement in TU lowers optimal self-insurance as long as relative risk aversion is greater

or equal to 1. This appears to be the most important case from an empirical perspective.

(11) also reveals that ID is necessary to have constant or increasing self-insurance elasticity

of loss-state wealth.

13 Meyer and Meyer (2005) consolidate empirical results on relative risk aversion and find broad support for
relative risk aversion exceeding one, in which case many comparative statics results remain indeterminate.
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We provide two numerical examples to illustrate Proposition 4. In the first one we assume

L(y, κ) = l0(1 − κh(y)) with l0 > 0, h′ > 0, h′′ ≤ 0 and κ ∈ (0, 1) (Example 2, ID). This

particular specification yields a self-insurance elasticity of loss-state wealth which is increasing

in the technology parameter.14 We set w = 10, l0 = 6, p = 0.1, h(y) = 1 − e−0.3y, and use

a separable cost function, c(y) = 0.005y. Risk preferences are represented by an iso-elastic

utility function u(x) = x1−γ/(1 − γ) with γ = 0.5 so that relative risk aversion is below

1. Therefore, Proposition 4a) applies, corresponding to the top left corner of Table 2, and

we expect an increase in self-insurance upon FSD improvements. We assume κ̃ to follow

a Beta(α, 1) distribution with α ranging from 0.01 to 1.5. As α increases, the distribution

improves in the FSD sense (see Appendix A.3 for a proof). The upward sloping line in Figure

3 confirms that self-insurance increases from y = 0 to y = 6.86.

For the second numerical example we use L(y, κ) = (1 − κ)l0(1 − h(y)) with l0 > 0,

h′ > 0, h′′ ≤ 0 and κ ∈ (0, 1) (Example 1, DD). We take the same parameters as in the

previous example except for relative risk aversion, which we set at γ = 4. DD implies that

the self-insurance elasticity of loss-state wealth is decreasing in the technology parameter

and relative risk aversion exceeds unity so that Proposition 4c) applies, corresponding to

the bottom right corner of Table 2. We therefore expect a decrease in self-insurance upon

FSD improvements. The downward sloping line in Figure 3 shows this effect. Self-insurance

decreases from y = 2.21 to y = 0 as α increases.

To obtain economic intuition for Proposition 4, we examine the separable case where TU

only affects the marginal benefit of self-insurance. For two different distributions κ̃1 and κ̃2

of the technology parameter, we obtain the following decomposition:

−pELy(y, κ̃2)u′(w − L(y, κ̃2)) + pELy(y, κ̃1)u′(w − L(y, κ̃1))

= −pELy(y, κ̃2)
[
u′(w − L(y, κ̃2))− u′(w − L(y, κ̃1))

]
(12)

+pE [Ly(y, κ̃1)− Ly(y, κ̃2)]u′(w − L(y, κ̃1)).

If κ̃2 has FSD over κ̃1, losses under κ̃2 are lower than under κ̃1 in an FSD sense. But then

loss-state wealth under κ̃2 has FSD over loss-state wealth under κ̃1 so that expected marginal

utility is lower under κ̃2 than under κ̃1. This is due to diminishing marginal utility, which

is why we label it a risk aversion effect. It implies for the first square bracket in Eq. (12)

to have a negative expected value. Intuitively, with lower expected marginal utility, reducing

losses increases expected utility by less than if marginal utility were high. So the risk aversion

effect diminishes the demand for self-insurance. On the other hand, if κ̃2 has FSD over κ̃1,

there is an effect on the marginal product of self-insurance. Under DD for example, better

technologies have a lower marginal product so that −Ly(y, κ̃1) has FSD over −Ly(y, κ̃2).

We call this a productivity effect. It implies for the second square bracket in Eq. (12) to

14 The self-insurance elasticity of loss-state wealth is Ew`,y = yl0κh
′/(w − l0(1 − κh(y))). The numerator of

∂κEw`,y is given by yl0h
′(w − l0), which is positive as long as some self-insurance is in demand.
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Figure 3: The effect of an FSD improvement in TU on optimal self-insurance. The underlying parameters are LID(y, κ) =
l0(1− κh(y) with h(y) = 1− e−0.3y ,LDD(y, κ) = (1− κ)l(y) with l(y) = l0e−0.3y , w = 10, l0 = 6, p = 0.1, a separable
cost function of c(y) = 0.005y, and iso-elastic utility u(x) = x1−γ/(1− γ) with γDD = 4 and γID = 0.5. κ̃ is distributed
according to Beta(α, 1) with α ranging from 0.01 to 1.5.

have a negative expected value and exerts a negative effect on the demand for self-insurance.

However, the net effect also depends on how the risk aversion effect covaries with the marginal

product and how the productivity effect covaries with marginal utility. The conditions stated

in Proposition 4 allow for a compact way of resolving all associated trade-offs.

In the following remark, we provide some further conditions that allow us to resolve the

inconclusive combinations in Proposition 4.

Remark 2. Assume the cost is separable.

a) Under CD and DD, an FSD improvement of technological uncertainty always reduces

the optimal level of self-insurance.

b) For L(y, κ) = l0 · (1 − κh(y)) with h′ > 0 and h′′ ≤ 0 (Example 2, ID), an FSD

improvement of the technological uncertainty raises the optimal level of self-insurance if

relative risk aversion does not exceed 2 and w > 2l0.

3.4 An Increase in TU

We now move on to the effect of an increase in TU on optimal self-insurance. Our analysis

will provide an answer to question 3) posed in Section 2.1. People may differ in the perceived

uncertainty of a self-insurance effort, and our results inform about the behavioral implications

of such heterogeneity. We can also speak to cases where new information, scientific discovery

or technological improvements reduce TU without eliminating it. This is an important gene-
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ralization of Proposition 3 because risk reduction activities target uncertain outcomes in the

future, making it hardly conceivable for TU ever to be absent at all.

From a modeling perspective, we cannot simply use a Rothschild and Stiglitz (1970) in-

crease in risk of κ̃ because such a change may or may not induce an increase in risk of L(y, κ̃)

for reasons of non-linearity in the technology parameter. We address this challenge explicitly

in the strategy of our proof and consider changes that affect the riskiness of losses in a clearly

defined way. The additional risk on consumption raises the incentive to use self-insurance

for prudent agents. At the same time, there is an effect on the marginal product of self-

insurance. To determine net effects, we require an additional measure of how self-insurance

affects wealth.

Definition 3. Ew`κ,y(y, κ) = y · w`yκ(y, κ)/w`κ(y, κ) denotes the self-insurance elasticity of

technological improvement.

This terminology is motivated by the following reasoning. Higher values of κ correspond

to better technologies in the sense that losses are lower. In other words, loss-state wealth is

increasing in κ, and w`κ measures by how much it increases when moving to the next best

technology. This technological improvement is sensitive to the use of self-insurance, and we

know from Definition 1 that self-insurance may lower or raise it, depending on whether the

technology has DD or ID. The elasticity in Definition 3 measures the magnitude of this effect.

A one percent increase in self-insurance changes w`κ by Ew`κ,y percent. Under DD, for example,

Ew`κ,y is negative so if we increase self-insurance by one percent, w`κ declines by |Ew`κ,y| percent.

Then, the favorable effect on loss-state wealth from moving to the next best technology is

dampened by this factor due to the raise in self-insurance.15

Proposition 5. Assume w`y(y
∗, κ) > 0. An increase in TU:

a) Raises optimal self-insurance if relative prudence exceeds 2, the self-insurance elasticity

of loss-state wealth is non-increasing in κ and the self-insurance elasticity of technological

improvement is non-decreasing in κ.

b) Raises (leaves unchanged, lowers) optimal self-insurance if relative prudence is equal to

2, the self-insurance elasticity of loss-state wealth is decreasing (constant, increasing)

in κ and the self-insurance elasticity of technological improvement is non-decreasing

(constant, non-increasing) in κ.

c) Lowers optimal self-insurance if relative prudence is less than 2, the self-insurance elasti-

city of loss-state wealth is non-decreasing in κ and the self-insurance elasticity of techno-

logical improvement is non-increasing in κ.

15 Unlike the self-insurance elasticity of loss-state wealth, the self-insurance elasticity of technological impro-
vement does not depend on initial wealth. An alternative notation is ELκ,y, and the reasoning would then
be in terms of loss sizes instead of loss-state wealth.
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We illustrate Proposition 5 in Table 3, where P = −w u′′′(w)
u′′(w) indicates the agent’s degree of

relative prudence. Roughly speaking, in those cases where prudence is large, the precautionary

effect dominates and the increase in technological uncertainty induces the agent to optimally

increase her level of self-insurance. For this intuitive result to hold, certain requirements on

the technology need to be satisfied. On the contrary, if prudence is small, the precautionary

effect is less pronounced and we can think of the increase in technological uncertainty to

further compromise the efficiency of self-insurance. Coupled with the appropriate elasticity

conditions, this induces the decision-maker to optimally lower her investment in self-insurance.

P < 2 P = 2 P > 2

∂κEw`,y > 0, ∂κEw`κ,y ≤ 0 − − +/−

∂κEw`,y = 0, ∂κEw`κ,y = 0 − 0 +

∂κEw`,y < 0, ∂κEw`κ,y ≥ 0 +/− + +

Table 3: The effect of an increase in TU on the demand for self-insurance

We illustrate Proposition 5 with the following two examples whose numerical results are

shown in Figure 4. Consider again an agent with iso-elastic utility function u(x) = x1−γ

1−γ , where

γ is the degree of relative risk aversion, which also implies that the degree of relative prudence

equals γ + 1. For the first example, assume L(y, κ) = l0(1− κh(y)) where h(y) = 1− e−0.3y.

(Example 2, ID) Simple calculation shows that this loss function implies ∂κEw`,y(y, κ) > 0

and ∂κEw`κ,y(y, κ) = 0, which is why, according to Proposition 5, the optimal self-insurance

should be reduced by an increase of technological uncertainty when the agent’s degree of

relative prudence does not exceed 2. To observe this numerically, we let κ̃ follow a symmetric

beta-distribution Beta(α, β) where α ranges from 0.01 to 0.5 and β = α. As we show in the

appendix, a decrease in α renders a mean-preserving spread of the Beta distribution. We let

γ = 0.9 so that the agent’s degree of relative prudence equals 1.9. As shown by Figure 4, an

increase in technological uncertainty indeed reduces the optimal level of self-insurance from

y = 3.83 to y = 3.45, which is in line with our theoretical prediction.

For the second example, L(y, κ) = (1 − κ)l(y) where l(y) = l0e
−0.3y. (Example 1, DD)

Obviously, ∂κEw`,y(y, κ) < 0 and ∂κEw`κ,y(y, κ) = 0, therefore Proposition 5 predicts higher

demand for self-insurance upon an increase in technological uncertainty when the degree of

relative prudence exceeds 2. We set γ = 1.5 so that the degree of relative prudence is 2.5.

The prediction is confirmed by the upward trend in Figure 4, where the agent’s optimal

self-insurance is increased from y = 2.44 to y = 2.73.

Again, the two ambiguous combinations of Proposition 5 can be resolved once we know

further details about the loss function. The following remark provides such an example, whose

proof can be found in the appendix.

Remark 3. Assume separable cost. An increase in technological uncertainty:
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Figure 4: The effect of increases in technological uncertainty on the demand for self-insurance. The underlying parameters
are LID(y, κ) = l0(1 − κh(y) with h(y) = 1 − e−0.3y ,LDD(y, κ) = (1 − κ)l(y) with l(y) = l0e−0.3y , w = 10, l0 = 6,
p = 0.1, a separable cost function of cID(y) = 0.005y, cDD(y) = 0.002y and iso-elastic utility u(x) = x1−γ/(1− γ) with
γID = 0.9 and γDD = 1.5. κ̃ is distributed according to Beta(α, α) with α ranging from 0.01 to 0.5.

a) raises the optimal level of self-insurance for a prudent agent when L(y, κ) = (1−κ)l(y),

ly < 0, lyy ≥ 0 (Example 1, DD)

b) lowers the optimal level of self-insurance for an agent with relative prudence below 4

when L(y, κ) = l0(1− κh(y)), hy > 0, hyy ≤ 0 (Example 2, ID) and w > 2l0.

In the first case, the marginal productivity of self-insurance is small when the loss is large

(ID). Similar to our earlier observation in Proposition 3, this effect encourages a reduction

of self-insurance upon an increase in technological uncertainty, which works against the pre-

cautionary effect and therefore relaxes the upper threshold of relative prudence for lower

self-insurance from 2 to 4. In the second case, the loss function (DD) generates an effect

in line with the precautionary effect such that it allows any prudent agent - including those

whose degree of relative prudence is below 2 - to raise the level of self-insurance upon an

increase of technological uncertainty.

4 Optimal Demand for Self-Protection

4.1 Preliminaries

We will now study self-protection activities. Unlike self-insurance, self-protection has no effect

on the loss size but reduces the probability of loss instead. We denote by x ≥ 0 the level of

self-protection. We maintain the distinction between separable and non-separable cost, and

denote the cost function by c(x) with c′ > 0 and c′′ ≥ 0. TU enters the analysis by letting the
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probability of loss depend on both x and an exogenous variable κ ∈ [κ, κ] so that p = p(x, κ).

This technology variable has the same interpretation as for self-insurance. For any κ ∈ [κ, κ],

we assume px < 0 and pxx ≥ 0, that is, any possible self-protection technology reduces the

probability of loss at a decreasing rate. We also assume pκ < 0, so high values of κ identify

better technologies in the sense of a lower loss probability. We use the taxonomy analogous

to Definition 1 for the sign of the cross-derivative.

The agent’s objective function for separable cost is then given by

max
x≥0

U(x) = (1− Ep(x, κ̃))u(w) + Ep(x, κ̃)u(w − L)− c(x), (13)

where the expectation is taken with respect to the agent’s beliefs over TU. The associated

first-order condition is

U ′(x) = − (u(w)− u(w − L))Epx(x, κ̃)− c′(x) = 0, (14)

and we denote the optimal level of self-protection by x∗. The second-order condition holds

under the assumptions made. The marginal cost is the disutility of exerting a self-protection

effort whereas the marginal benefit results from the expected increase of expected consumption

utility due to a lower loss probability. Only the marginal benefit is affected by TU because

of the separability of cost.

In the non-separable case, the agent’s objective function is

max
x≥0

U(x) = (1− Ep(x, κ̃))u(w − c(x)) + Ep(x, κ̃)u(w − L− c(x)), (15)

with corresponding first-order condition

U ′(x) = − (u(w − c(x))− u(w − L− c(x)))Epx(x, κ̃)

− c′(x)(1− Ep(x, κ̃))u′(w − c(x))− c′(x)Ep(x, κ̃)u′(w − L− c(x)) = 0.
(16)

We assume the second-order condition to hold.16 Without separability, TU enters both the

marginal cost and the marginal benefit of self-protection.

An increase in TU does not affect the demand for self-protection whether the cost is

separable or not. This null effect generalizes to any stochastic change that preserves the mean

self-protection technology. In all these cases the objective function remains unaffected because

TU simply washes out. Questions 1) and 3) from Section 2.1 therefore have a trivial answer.

The effect of TU and of increases in TU is the same for WTP for self-protection and optimal

demand for self-protection (see Proposition 2), and while these effects are complex in case of

self-insurance (see Propositions 3 and 5), they are trivial for self-protection. The reason is

16 The objective function in the standard self-protection problem may or may not be concave. Jullien et al.
(1999) provide sufficient conditions for concavity in the absence of TU.
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the linearity of expected utility in probabilities. So to argue for the relevance of TU in case

of self-protection, deviations from expected utility are a prerequisite.

4.2 An FSD Improvement in TU

We study the effect of FSD changes in TU on optimal self-protection because such changes

alter the expected probability of loss. This corresponds to question 2) in Section 2.1. Reasons

for FSD improvements include new information about the effectiveness of self-protection,

technological improvements or changes in the agent’s perception. We summarize our findings

in the following proposition, which we demonstrate in Appendix A.7

Proposition 6. An FSD improvement in TU:

a) Increases (leaves unchanged, decreases) self-protection if the cost is separable and the

technology has ID (CD, DD).

b) Increases self-protection if the cost is non-separable and the technology has ID or CD.

Whereas the WTP for self-protection always increases following an FSD improvement in

TU (see Proposition 2), the optimal demand for self-protection may increase or decrease. The

FSD improvement affects the marginal product of self-protection in a way akin to the pro-

ductivity effect in Section 3.3. Under DD, better technologies have lower marginal products,

which reduces the marginal benefit of self-protection. When the cost is separable, this is

the only effect of an FSD improvement, and demand for self-protection goes down. Under a

non-separable cost, we also have to take into account that the FSD improvement lowers the

average probability of loss. Then there is less weight on the state with high marginal utility,

which reduces the marginal cost of self-protection. This explains why the DD case remains

inconclusive under non-separable cost because the effect on marginal benefit conflicts with

that on marginal cost. When the technology exhibits ID or CD, the productivity effect is

positive, and the effects of the FSD improvement on marginal benefit and marginal cost are

aligned.

In Figure 5, we provide two numerical examples that show the demand for self-protection as

the technology undergoes an FSD improvement. The downward sloping curve represents a DD

technology p(x, κ) = (1− κ)g(x), g(x) = e−0.05x and a separable cost function c(x) = 0.004x,

whereas for the upward sloping curve, we have an ID technology with p(x, κ) = 1 − κh(x),

h(x) = 1 − e−0.05x and a separable cost function c(x) = 0.0015x. The agent has iso-elastic

utility u(z) = z1−γ/(1 − γ) with γ = 1.5. κ̃ is distributed according to Beta(α, 1) with α

ranging from 0.01 to 1.5 so that an increase in α corresponds to an FSD improvement. As

predicted by Proposition 6 a), DD (ID) induces the agent to decrease (increase) her effort

when there is an FSD improvement of the technology.

While Proposition 4 requires restrictions on the intensity of risk aversion for FSD im-

provements and self-insurance, Proposition 6 holds for all risk-averse agents. This is a rare
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Figure 5: The effect of an FSD improvement in technological uncertainty on the demand for self-protection. The
underlying parameters are pID(x, κ) = 1−κh(x) with h(x) = 1− e−0.05x,pDD(x, κ) = (1−κ)g(x) with g(x) = e−0.05x ,
w = 10, L = 6, a separable cost function of cID(x) = 0.0015x, cDD(x) = 0.004x and iso-elastic utility u(z) = z1−γ/(1−γ)
with γ = 1.5. κ̃ is distributed according to Beta(α, 1) with α ranging from 0.01 to 1.5.

occasion where self-protection admits much simpler comparative statics than self-insurance.

Given that DD is considered more plausible than ID or CD (Doherty and Posey, 1998; Crai-

nich and Eeckhoudt, 2017), we will develop conditions that allow to resolve the trade-off

under non-separable costs. We define the utility premium (see Friedman and Savage, 1948;

Eeckhoudt and Schlesinger, 2009) associated with loss L as

v(w;x) = u(w − c(x))− u(w − L− c(x)), (17)

and denote its derivative with respect to w as v′(w;x). Monotonicity of u renders v positive.

It measures the pain of incurring loss L in units of utility. Risk aversion of u implies that v

is decreasing in wealth because at high wealth levels it is less painful to incur loss L than at

low wealth levels. We also state a definition pertaining to the self-protection technology.

Definition 4. Assume that p(x, κ) exhibits DD. We call ρ(x, κ) = −pxκ(x, κ)/pκ(x, κ) the

decay rate of technological improvement.

Higher values of κ correspond to better technologies because the associated loss probability

is lower. One way to think of DD is that it dampens the gain from better technologies the
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more the agent invests in self-protection. ρ measures the magnitude of this effect.17 We are

now in a position to state our last proposition, which we prove in Appendix A.8.

Proposition 7. Assume a non-separable cost and a technology with DD. Then, an FSD

improvement in TU increases optimal self-protection if

ρ(x∗, κ) < −c′(x∗)v
′(w;x∗)

v(w;x∗)
for all κ ∈ [κ, κ]. (18)

It decreases optimal self-protection if the reverse inequality holds.

Condition (18) has an easy interpretation. The left hand side measures by how much the

marginal product of self-protection deteriorates when moving to better technologies. If this

measure is bounded, self-protection is still sufficiently productive for the agent to raise her

investment in self-protection following the FSD improvement. In other words, the decrease

in the marginal cost due to lower loss probabilities outweighs the decrease in the marginal

benefit resulting from DD. The right hand side of (18) is related to the agent’s level of risk

aversion, which we can see most clearly with the help of a specific example.

Example 4. Consider an agent with exponential utility, u(w) = 1− e−Aw, with absolute risk

aversion A > 0. Also assume a constant per-unit cost of self-protection, c(x) = kx with k > 0,

and a technology of p(x, κ) = (1 − κ)e−νx with κ ∈ (0, 1) and ν > 0 (Example 1, DD). It is

easy to see that ρ(x, κ) = ν. Then, condition (18) becomes ν < kA. An FSD improvement in

TU increases optimal self-protection if and only if risk aversion exceeds ν/k.

Risk aversion determines the wedge between marginal utility in the loss state versus the no-

loss state. Therefore, it measures by how much the marginal cost of self-protection decreases

when moving to better technologies. Even outside the specific class of exponential utility

functions, the decay rate of the utility premium can be related to the agent’s degree of risk

aversion, as is shown by the following remark, which we prove in the appendix.

Remark 4. If u is risk vulnerable (Gollier and Pratt, 1996), we can express a lower bound

for −v′(w;x∗)/v(w;x∗) in terms of the agent’s absolute risk aversion. Then the following

conditions is sufficient for (18):

ρ(x∗, κ) < c′(x∗)A(w − c(x∗)− L/2) for all κ ∈ [κ, κ], (19)

where A(·) = −u′′(·)/u′(·) is Arrow-Pratt risk aversion.

We have seen that for high enough risk aversion, an FSD improvement in TU increases

optimal self-protection under DD for a non-separable cost, while it decreases it for any degree

of risk aversion under separable cost. This discrepancy illustrates how the distinction between

separable and non-separable cost can lead to diametrically different results.

17 Measures of this form occur in the comparative statics analysis of multivariate self-protection decisions
(Hofmann and Peter, 2015) and for self-protection against multiple risks (Courbage et al., 2017).
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5 Conclusion

In this paper, we study risk reduction in the presence of technological uncertainty. This is

motivated by situations in which environmental factors influence the effectiveness of risk re-

duction, as well as where the lack of information or heterogeneity in individual perceptions

make the benefits of risk reduction only imperfectly predictable. Consistent with prior lite-

rature, we conduct our analysis by differentiating between self-insurance and self-protection.

Specifically, we study the effects of technological uncertainty as well as those of FSD impro-

vements and increases in technological uncertainty on the willingness to pay and the optimal

demand for both types of activities.

The effects on willingness to pay are very straightforward and can be subsumed by the

observation that technological uncertainty compromises the attractiveness of risk reduction.

In contrast, the effects on the optimal demand for self-insurance and self-protection are more

intricate and give rise to interesting trade-offs that have not been identified in previous litera-

ture. In particular, the optimal demand for self-insurance may increase or decrease depending

on how the channel through which uncertainty operates on the technology interacts with the

agent’s prudence. A prudent agent will have a precautionary demand for self-insurance in

the presence of technological uncertainty, consistent with the precautionary principle, and

this effect prevails as long as potentially countervailing technology effects are bounded. We

also notice that in the case of self-insurance, technological uncertainty reduces the individual’s

welfare regardless of its behavioral implications, which is a direct consequence of risk aversion.

It is thus impossible to use changes in the demand for self-insurance as an indicator of the

agent’s welfare unless additional preference and technology parameters are identified along

the lines of the measures proposed in this paper.

Our findings have descriptive and normative implications. First, they may help explain

why individuals use certain forms of risk reduction to a lesser extent than would be expected.

Our propositions identify cases where technological uncertainty and increases thereof induce

individuals to utilize less self-insurance, as well as those where FSD improvements in techno-

logical uncertainty lower the demand for self-insurance and self-protection. If technological

uncertainty arises from a lack of information or from the agent’s biased beliefs that underes-

timate the true effectiveness of risk mitigation, individuals might fail to maximize expected

utility and make sub-optimal choices. Finally, our results inform public policy in the many

areas where scientific knowledge about the precise cause-effect relationships is incomplete.

In many of these cases, such as fighting against climate change, we are called to act today

although our knowledge of how our actions are going to mitigate future risk is subject to con-

siderable uncertainty. Proponents of higher investments to fight climate change argue based

on the precautionary principle. Opponents argue that we might be wasting resources if we

cannot even be sure how much future generations will benefit from our endeavor. Our results

show that both sides have their point and that, in order to arrive at a solution, we need

to reach an agreement on the intensity of our precautionary motive and the way we believe
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information to alter the effectiveness of risk mitigation. We are confident that our results will

spur empirical tests in that direction and that our measures will find fruitful applications in

many other areas of decision-making under risk and uncertainty.
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A Mathematical Proofs

A.1 Proof of Proposition 1

Combining Eq. (1) and (2), we obtain

(1− p) · u(w − v0) + p · u(w − L0 − v0) = (1− p) · u(w − v1) + p · Eu(w − L̃1 − v1)

< (1− p) · u(w − v1) + p · u(w − EL̃1 − v1) = (1− p) · u(w − v1) + p · u(w − L0 − v1),
(20)

where the inequality holds due to risk aversion. The claim then follows because expected

utility is decreasing in v0. The proofs for the FSD improvement and an increase in TU are

analogous and utilize well-known links between changes in risk and expected utility, see, for

example, Theorem 2 in Eeckhoudt et al. (2009).

A.2 Proof of Proposition 3

To remove TU, we solve the agent’s problem if the technology is given by the expected

technology, i.e., L̄(y) = EL(y, κ̃), and then compare the optimal level of self-insurance to the

one obtained in the presence of TU. We start with a separable cost function. The agent’s

objective in the absence of TU is given by

max
y≥0

V (y) = (1− p)u(w) + pu(w − L̄(y))− c(y), (21)

with associated first-order condition

− pu′(w − L̄(y0))L̄y(y
0)− c′(y0) = 0. (22)

y0 is shorthand for the optimal level of self-insurance in the absence of TU (i.e., when TU is

set to zero). We insert this level into the agent’s first-order expression in the presence of TU

and utilize condition (22) to obtain

U ′(y0) = −p · ELy(y0, κ̃)u′(w − L(y0, κ̃))− c′(y0)

= −p · ELy(y0, κ̃)u′(w − L(y0, κ̃)) + pu′(w − L̄(y0))L̄y(y
0)

= p · Cov
[
−u′(w − L(y0, κ̃)), Ly(y

0, κ̃)
]

−pL̄y(y0)
(
Eu′(w − L(y0, κ̃))− u′(w − L̄(y0))

)
. (23)

The last equality follows from the covariance rule and the fact that ELy(y0, κ̃) = L̄y(y
0). The

sign of the covariance depends on how u′(w−L(y0, κ)) and Ly(y
0, κ) covary in κ. We obtain

∂κ(−1) · u′(w − L(y0, κ)) = Lκ(y0, κ)u′′(w − L(y0, κ)) > 0. (24)

The sign of Lyκ(y0, κ) is directly determined by whether the technology exhibits DD, CD or

ID. As a consequence, the covariance term is positive (zero, negative) under DD (CD, ID).
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The term −pL̄y(y0) is always positive whereas Eu′(w − L(y0, κ̃)) − u′(w − L̄(y0)) is positive

(zero, negative) if the agent is prudent (has quadratic utility, is imprudent). Combining these

signs accordingly completes the proof for separable cost.

For the non-separable case, the agent’s objective function in the absence of TU is

max
y≥0

V (y) = (1− p)u(w − c(y)) + pu(w − L̄(y)− c(y)), (25)

with associated first-order condition

− (1− p) · u′(w − c(y0))c′(y0)− p · u′(w − L̄(y0)− c(y0))(L̄y(y
0) + c′(y0)) = 0. (26)

Necessary for the first-order condition to be satisfied is that L̄y(y
0) + c′(y0) < 0. We insert

y0 into the agent’s first-order expression in the presence of TU and utilize (26) to obtain

U ′(y0) = −(1− p) · u′(w − c(y0))c′(y0)− p · Eu′(w − L(y0, κ̃)− c(y0))(Ly(y
0, κ̃) + c′(y0))

= −p · Eu′(w − L(y0, κ̃)− c(y0))(Ly(y
0, κ̃) + c′(y0))

+p · u′(w − L̄(y0)− c(y0))(L̄y(y
0) + c′(y0)) (27)

= p · Cov
[
−u′(w − L(y0, κ̃)− c(y0)), Ly(y

0, κ̃) + c′(y0)
]

−p
(
L̄y(y

0) + c′(y0)
) (

Eu′(w − L(y0, κ̃)− c(y0))− u′(w − L̄(y0)− c(y0))
)
.

The last equality follows from the covariance rule and the fact that ELy(y0, κ̃) = L̄y(y
0).

As before, we sign the covariance term depending on how its arguments covary in κ. It is

positive (zero, negative) under DD (CD, ID). The term −p
(
L̄y(y

0) + c′(y0)
)

is positive due to

the optimality of y0 and the term Eu′(w−L(y0, κ̃)− c(y0))−u′(w− L̄(y0)− c(y0)) is positive

(zero, negative) if the agent is prudent (has quadratic utility, is imprudent). The proposition

then follows by combining these signs accordingly.

A.3 First-order and second-order risk changes with the beta distribution

Technology parameter κ ranges between 0 and 1 so the beta distribution is a natural choice

for illustration. It turns out to parameterize first-order and second-order risk changes, which

we will show rigorously here. For parameters α > 0 and β > 0, its density is

xα−1(1− x)β−1

B(α, β)
, x ∈ [0, 1] or x ∈ (0, 1), (28)

where B(α, β) = Γ(α)Γ(β)/Γ(α+β) denotes the beta function and Γ(z) =
∫∞

0 xz−1e−xdx the

gamma function. Mean and variance are given by

µ =
α

α+ β
and σ2 =

αβ

(α+ β)2(α+ β + 1)
. (29)
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The mean is increasing in α and decreasing in β, and the variance is decreasing in α if we

choose β such as to keep the mean constant.18

Lemma 1. Let F (x;α, β) =
∫ x

0
tα−1(1−t)β−1

B(α,β) dt be the cumulative distribution function of the

beta distribution with parameters α and β.

a) An increase in α or a decrease in β improve F in the sense of FSD.

b) At a constant mean, an increase in α induces a mean-preserving contraction in F .

Proof. For a) we need to show ∂F (x;α, β)/∂α ≤ 0 for all x ∈ [0, 1] and ∂F (x;α, β)/∂α < 0

for some x ∈ [0, 1]. We obtain

∂F (x;α, β)

∂α
=

∫ x

0

∂

∂α

[
tα−1(1− t)β−1

B(α, β)

]
dt (30)

=

∫ x

0

B(α, β)(ln t) · tα−1(1− t)β−1 − tα−1(1− t)β−1B(α, β) (ψ0(α)− ψ0(α+ β))

(B(α, β))2 dt

=

∫ x

0

[
ln t · t

α−1(1− t)β−1

B(α, β)

]
dt+ (ψ0(α+ β)− ψ0(α)) ·

∫ x

0

tα−1(1− t)β−1

B(α, β)
dt,︸ ︷︷ ︸

g(x)

where ψ0(ω) = Γ′(ω)/Γ(ω) is the digamma function.19. Furthermore,

g′(x) =
xα−1(1− x)β−1

B(α, β)
· [lnx+ ψ0(α+ β)− ψ0(α)] . (31)

Since xα−1(1 − x)β−1/B(α, β) > 0, the sign of g′(x) coincides with the sign of the square

bracket in (31). Now ψ0(α + β)− ψ0(α) > 0 (see Footnote 19) and lnx is strictly increasing

on (0, 1] from −∞ to 0. Therefore, x∗ = exp(ψ0(α) − ψ0(α + β)) is the unique zero of g′(x)

on (0, 1), where it switches from negative to positive. Also g(0) = g(1) = 0 as a result of

F (0;α, β) ≡ 0 and F (1;α, β) ≡ 1. So g(x) starts at zero, decreases until x = x∗ where it

reaches a global minimum, and then increases back to 0 as x approaches 1. We conclude that

∂F (x;α, β)/∂α ≤ 0 for all x ∈ [0, 1] and ∂F (x;α, β)/∂α < 0 for x ∈ (0, 1) as required. The

proof for β is analogous.

To show b), we fix the mean at µ0 ∈ (0, 1). Then, per Eq. (29), we obtain β = α(1−µ0)/µ0

so that we can rewrite the cumulative distribution function as J(x;α) = F (x;α, α(1−µ0)/µ0).

Its derivative with respect to α is

∂J(x;α)

∂α
=

∂F (x;α, β)

∂α
+

1− µ0

µ0
· ∂F (x;α, β)

∂β
, (32)

18 See Johnson et al. (1995) for a textbook introduction to the beta distribution.

19 ψ0(ω) =
∫∞
0

(
e−z

z
− e−zω

1−e−z

)
dz, which is increasing in ω.
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which we compute to be∫ x

0
(ln t) · t

α−1(1− t)β−1

B(α, β)
dt+ (ψ0(α+ β)− ψ0(α))

∫ x

0

tα−1(1− t)β−1

B(α, β)
dt

+
1− µ0

µ0

{∫ x

0
ln(1− t) · t

α−1(1− t)β−1

B(α, β)
dt+ (ψ0(α+ β)− ψ0(α))

∫ x

0

tα−1(1− t)β−1

B(α, β)
dt

}
.

(33)

We abbreviate this as k(x) and note that k(1) = k(0) = 0 since J(0;α) ≡ 0 and J(1;α) ≡ 1.

If we set

χ(x) =
1

µ0
[µ0 lnx+ (1− µ0) ln(1− x) + ψ0(α+ β)− ψ0(α)] , (34)

it follows that

k′(x) =
xα−1(1− x)β−1

B(α, β)
· χ(x). (35)

Since xα−1(1 − x)β−1/B(α, β) > 0, k′(x) and χ(x) must have the same sign. To determine

this sign, we note that χ(0) = χ(1) = −∞ and

χ′(x) =
µ0 − x

µ0x(1− x)
. (36)

So χ(x) is strictly increasing for x < µ0, obtains a maximum at x = µ0, and is strictly

decreasing for x > µ0. At this maximum χ(x) is positive because if we had χ(µ0) ≤ 0 instead,

k(x) would be strictly decreasing on (0, µ0) ∪ (µ0, 1), contradicting with k(1) = k(0) = 0.

But if χ(µ0) > 0, we can find 0 < x′ < x′′ < 1 such that χ(x) is negative on (0, x′) ∪ (x′′, 1)

and positive on (x′, x′′). In other words, k(x) starts at zero, decreases on [0, x′), obtains a

minimum for x = x′, increases on (x′, x′′), obtains a maximum for x = x′′ and decreases back

to zero on (x′′, 1]. To maintain continuity, there must then be a x∗∗ ∈ (x′, x′′) with k(x∗∗) = 0

such that k(x) is negative on (0, x∗∗) and positive on (x∗∗, 1). But this implies that an increase

in α lowers J(x;α) for x ∈ (0, x∗∗) and raises J(x;α) for x ∈ (x∗∗, 1) while leaving the mean

unchanged. Said differently, an increase in α concentrates probability mass around the mean

resulting in a mean-preserving contraction.

A.4 Proof of Remark 1

We assume a separable cost function. For L(y, κ) = (1− κ) · l(y) we obtain

U ′(y0) = −pELy(y0, κ̃)u′(w − L(y0, κ̃)) + pu′(w − L(y0))Ly(y
0)

= −pl′(y0)E(1− κ̃)u′(w − (1− κ̃)l(y0)) + pl′(y0)(1− κ)u′(w − (1− κ)l(y0)),
(37)

with κ = Eκ̃. Let f(κ) = (1− κ)u′(w`) with w` = w − (1− κ)l(y0); then,

f ′′(κ) = u′′(w`)l(y0)

[
−2− (1− κ)l(y0)

w`

(
−w`u

′′′(w`)

u′′(w`)

)]
, (38)
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which is positive under the assumptions made. Therefore, Ef(κ̃) > f(κ) so that U ′(y0) > 0

indicating the optimality of a higher level of self-insurance under TU. This shows a).

For b) we use L(y, κ) = l · (1− κh(y)) so that

U ′(y0) = −pELy(y0, κ̃)u′(w − L(y0, κ̃)) + pu′(w − L(y0))Ly(y
0)

= plh′(y0)Eκ̃u′(w − l(1− κ̃h(y0)))− plh′(y0)u′(w − l(1− κh(y0))).
(39)

If we set f(κ) = κu′(w`) with w` = w − l(1− κh(y0)), then

f ′′(κ) = lh(y0)u′′(w`)

[
2− κlh(y0)

w`

(
−w`u

′′′(w`)

u′′(w`)

)]
. (40)

This is negative under the stated assumptions. Then, Ef(κ̃) < f(κ), implying U ′(y0) < 0. As

a result, TU lowers the optimal level of self-insurance.

A.5 Proof of Proposition 4

κ̃1 and κ̃2 represent the relevant distributions of the technology variable, and we assume κ̃2

to dominate κ̃1 in the sense of FSD. Let V (y) denote the agent’s objective function under

κ̃2 and let y∗1 denote the optimal level of self-insurance under κ̃1. To compare the demand

for self-insurance before and after the FSD improvement, we insert y∗1 into the first-order

expression of V (y) and determine its sign. For both the separable and the non-separable cost

we obtain

V ′(y∗1) = pEu′
(
w`(y∗1, κ̃2)

)
w`y(y

∗
1, κ̃2)− pEu′

(
w`(y∗1, κ̃1)

)
w`y(y

∗
1, κ̃1) (41)

after inserting the first-order condition for y∗1. If we define

Φ(κ) = pu′
(
w`(y∗1, κ)

)
w`y(y

∗
1, κ), (42)

we can rewrite V ′(y∗1) = EΦ(κ̃2) − EΦ(κ̃1) and use the result in Ekern (1980) to rank both

expectations by signing Φ′. We obtain that

Φ′(κ) = pu′′
(
w`(y∗1, κ)

)
w`κ(y∗1, κ)w`y(y

∗
1, κ) + pu′

(
w`(y∗1, κ)

)
w`yκ(y∗1, κ)

= pu′
(
w`(y∗1, κ)

)
w`κ(y∗1, κ)

[
w`yκ(y∗1, κ)

w`κ(y∗1, κ)
−R

(
w`(y∗1, κ)

)
·
w`y(y

∗
1, κ)

w`(y∗1, κ)

]
,

(43)

where R(·) abbreviates the agent’s degree of relative risk aversion. Due to w`y(y
∗, κ) > 0, the

sign of Φ′(κ) coincides with the sign of the square bracket. Since

∂κEw`,y(y, κ) = y ·
w`yκ(y, κ)w`(y, κ)− w`κ(y, κ)w`κ(y, κ)

(w`(y, κ))
2 , (44)

33



Optimal Risk Reduction under TU

Ew`,y(y, κ) is increasing (constant, decreasing) in κ if
w`yκ(y∗1 ,κ)

w`κ(y∗1 ,κ)
> (=, <)

w`y(y∗1 ,κ)

w`(y∗1 ,κ)
for all κ.

Combining this with the appropriate restriction on relative risk aversion completes the proof.

Proof of Remark 2

If the cost of self-insurance is separable, we have

Φ′(κ) = pu′′ (w − L(y∗1, κ))Lκ(y∗1, κ)Ly(y
∗
1, κ)− pu′ (w − L(y∗1, κ))Lyκ(y∗1, κ).

The first term is negative because u′′, Lκ and Ly are. Under CD and DD, the second term

is non-positive because Lyκ ≥ 0. As a result Φ′ < 0 such that EΦ(κ̃2) < EΦ(κ̃1) per Ekern

(1980) and V ′(y∗1) < 0. Consequently, y∗2 < y∗1. For b), we have Eq (43) is positive if:

R <
w`yκw

`

w`κw
`
y

= 1 +
w − l0 + l0κh(y)

l0κh(y)

≥ 2 if w ≥ 2l0.

Therefore, R < 2 is sufficient for Eq (43) > 0 if w ≥ 2l0.

A.6 Proof of Proposition 5

Let κ̃1 and κ̃2 be two different distributions of the technology parameter. If y∗1 denotes the

optimal level of self-insurance under κ̃1, we assume that L(y∗1, κ̃2) is a Rothschild and Stiglitz

(1970) increase in risk over L(y∗1, κ̃1). V (y) denotes the objective function after the risk change

(i.e., under κ̃2). To determine the effect of greater TU on self-insurance, we insert y∗1 into the

first-order expression for V (y) and determine the sign.

At a fixed level of self-insurance, say y = y∗1, the loss function maps technology parameters

into loss levels, that is,

L(y∗1, ·) : [κ, κ]→ [l, l], κ 7→ L(y∗1, κ). (45)

Due to monotonicity (Lκ < 0), we can define the inverse function h : [l, l] → [κ, κ] such that

L(y∗1, h(l)) = l for all l ∈ [l, l]. Its first and second derivative are given by

h′(l) =
1

Lκ(y∗1, h(l))
and h′′(l) = −Lκκ(y∗1, h(l)) · h′(l)

Lκ(y∗1, h(l))2
= −Lκκ(y∗1, h(l))

Lκ(y∗1, h(l))3
. (46)

For separable cost, we can use the first-order condition for y∗1 to rewrite the first-order

expression under κ̃2 evaluated at y∗1 as

V ′(y∗1) = EΨ(L(y∗1, κ̃2))− EΨ(L(y∗1, κ̃1)) (47)

with Ψ(l) = −pu′(w−l)Ly(y∗1, h(l)). We performed a change of variables because Ψ is parame-

terized by the codomain of L(y∗1, ·). This allows us to exploit that L(y∗1, κ̃2) is a Rothschild
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and Stiglitz (1970) increase in risk over L(y∗1, κ̃1), because if we determine the curvature of Ψ

in l, we can then sign (47). Direct computation and utilization of (46) yields

Ψ′(l) = pu′′Ly − pu′Lyκh′(l) = pu′′Ly − pu′
Lyκ
Lκ

,

Ψ′′(l) = −pu′′′Ly + pu′′Lyκh
′(l) +

[
pu′′Lyκ − pu′Lyκκh′(l)

]
h′(l)− pu′Lyκh′′(l)

= −pu′′′Ly + 2pu′′
Lyκ
Lκ
− pu′Lyκκ

L2
κ

+ pu′
LyκLκκ
L3
κ

, (48)

where we omit the arguments to compress notation. We also use w`y = −Ly, w`κ = −Lκ, and

so on, to rewrite Ψ′′(l) as follows:

Ψ′′(l) = pu′′′w`y + 2pu′′
w`yκ
w`κ

+ pu′
w`yκκ
(w`κ)2

− pu′w`yκ
w`κκ

(w`κ)3

=
pu′′

w`w`κ

[
2w`w`yκ − P (w`) · w`yw`κ

]
+

pu′

(w`κ)3

[
w`κw

`
yκκ − w`yκw`κκ

]
.

(49)

P (·) abbreviates the agent’s degree of relative prudence. Ew`,y is increasing (constant, decre-

asing) in κ if and only if w`w`yκ−w`yw`κ > 0 (= 0, < 0) for all κ. Similarly, Ew`κ,y is increasing

(constant, decreasing) in κ if and only if w`κw
`
yκκ−w`yκw`κκ > 0 (= 0, < 0) for all κ. Combining

these signs accordingly and using the appropriate restriction on relative prudence completes

the proof.

Proof of Remark 3

It follows immediately from the loss function in a) that Lκκ(y, κ) = w`κκ(y, κ) = 0 and

Lyκκ(y, κ) = w`yκκ(y, κ) = 0. We can therefore rewrite (49) as follows:

Ψ′′(l) =
pu′′

w`w`κ

[
2w`w`yκ − Pw`yw`κ

]
. (50)

Obviously, (50) > 0 if and only if 2w`w`yκ − Pw`yw`κ < 0, which is equivalent to

P >
2w`w`yκ
w`yw

`
κ

=
2(w − (1− κ)l(y))l′(y)

−(1− κ)l′(y)l(y)

= 2(1− w

(1− κ)l(y)
)

< 0.

Hence, an increase of technological uncertainty leads to an increase of self-insurance as long

as P > 0.
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Similarly, in b), we have w`κκ(y, κ) = w`yκκ(y, κ) = 0 and therefore 50 holds as well.

Furthermore, we have Ψ′′(l) < 0 if and only if

P <
2w`w`yκ
w`yw

`
κ

=
2l0h

′(y)(w − l0 + l0κh(y))

l0κh′(y)l0h(y)

= 2(1 +
w − l0
κl0h(y)

)

≥ 4 if w ≥ 2l0.

Therefore, P < 4 is sufficient for Ψ′′(l) < 0 given w ≥ 2l0.

A.7 Proof of Proposition 6

Let κ̃1 and κ̃2 be the two distributions of the technology parameter with κ̃2 dominating κ̃1 in

the sense of FSD. V (x) denotes the agent’s objective function under κ̃2 and x∗1 denotes the

optimal level of self-protection under κ̃1. We insert x∗1 into the first-order expression under

κ̃2 and determine the sign.

With a separable cost we obtain

V ′(x∗1) = − (u(w)− u(w − L))Epx(x∗1, κ̃2)− c′(x∗1)

= (u(w)− u(w − L)) · [Epx(x∗1, κ̃1)− Epx(x∗1, κ̃2)] ,
(51)

where the last equality follows from substituting the first-order condition for x∗1. The square

bracket is positive (zero, negative) if pxκ < 0 (= 0, > 0) per Ekern (1980). As a result,

V ′(x∗1) > 0 (= 0, < 0) under ID (CD, DD) so that a higher (identical, lower) level of self-

protection is optimal. This proves a).

To show b), we use a non-separable cost function. This yields

V ′(x∗1) = − (u(w − c(x∗1))− u(w − L− c(x∗1)))Epx(x∗1, κ̃2)

− c′(x∗1)(1− Ep(x∗1, κ̃2))u′(w − c(x∗1))− c′(x∗1)Ep(x∗1, κ̃2)u′(w − L− c(x∗1))

= (u(w − c(x∗1))− u(w − L− c(x∗1))) · [Epx(x∗1, κ̃1)− Epx(x∗1, κ̃2)]

+ c′(x∗1)
(
u′(w − L− c(x∗1))− u′(w − c(x∗1))

)
· [Ep(x∗1, κ̃1)− Ep(x∗1, κ̃2)] .

(52)

The last equality holds if we solve the first-order condition under κ̃1 for c′(x∗1)u′(w − c(x∗1))

and substitute. As in the separable case, the first square bracket in Eq. (52) is positive (zero,

negative) if pxκ < 0 (= 0, > 0). The second square bracket in Eq. (52) is always positive

because pκ < 0. Hence, we obtain V ′(x∗1) > 0 for ID and CD technologies, indicating that

more self-protection is optimal under κ̃2 than under κ̃1.
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A.8 Proof of Proposition 7

Let F1(κ) and F2(κ) be the cumulative distribution function of κ̃1 and κ̃2, respectively. Ac-

cording to the definition of FSD, F1(κ) ≥ F2(κ) for all κ ∈ [κ, κ] with a strict inequality for

some κ. Using the definition of ρ, we can rewrite condition (18) as

pxκ(x∗1, κ)− c′(x∗1)
v′(w;x∗1)

v(w;x∗1)
pκ(x∗1, κ) < 0 for all κ ∈ [κ, κ]. (53)

Integration preserves the sign, so we obtain∫ κ

κ

[
pxκ(x∗1, κ)− c′(x∗1)

v′(w;x∗1)

v(w;x∗1)
pκ(x∗1, κ)

]
· [F1(κ)− F2(κ)] dκ < 0. (54)

If we integrate by parts, condition (54) becomes∫ κ

κ
px(x∗1, κ) d [F1(κ)− F2(κ)]− c′(x∗1)

v′(w;x∗1)

v(w;x∗1)

∫ κ

κ
p(x∗1, κ) d [F1(κ)− F2(κ)] > 0. (55)

Using the definition of F1 and F2 yields∫ κ

κ
px(x∗1, κ) d [F1(κ)− F2(κ)] = Epx(x∗1, κ̃1)− Epx(x∗1, κ̃2) (56)

and ∫ κ

κ
p(x∗1, κ) d [F1(κ)− F2(κ)] = Ep(x∗1, κ̃1)− Ep(x∗1, κ̃2). (57)

Using the definition of v then shows that (55) rearranges to V ′(x∗1) > 0. So under κ̃2 more

self-protection is optimal than under κ̃2. The argument is analogous if the reverse of inequality

(18) holds.

A.9 Proof of Remark 4

The fundamental theorem of calculus yields

v(w;x∗) =

∫ 0

−L
u′(w − c(x∗) + t)dt = L · Eu′(w − c(x∗) + t̃) (58)

and

v′(w;x∗) =

∫ 0

−L
u′′(w − c(x∗) + t)dt = L · Eu′′(w − c(x∗) + t̃), (59)

where t̃ is uniformly distributed on [−L, 0] with density 1
L · 1[−L,0]. Its mean is given by L/2,

and risk vulnerability of u implies

− v′(w;x∗)

v(w;x∗)
= −Eu′′(w − c(x∗) + t̃)

Eu′(w − c(x∗) + t̃)
≥ −u

′′(w − c(x∗)− L/2)

u′(w − c(x∗)− L/2)
= A(w − c(x∗)− L/2). (60)
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So if c′(x∗)A(w− c(x∗)−L/2) exceeds ρ(x∗, κ), then −c′(x∗)v′(w;x∗)/v(x;x∗) does a fortiori.
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