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Abstract: This study expands the event-study framework to develop a generalized event 
study framework (GES) to examine the interconnections between banks and insurers in a causal 
estimation model. This GES framework adds autoregressive process responses to the standard 
event framework and then measures the impact of large standard deviation (SD) shocks on the 
resulting specifications’ intercept (“network shifts”), autoregressive response (“process 
dynamics”), and market returns (“systematic risk shifts”).  Our methodology focuses on the extent 
to which major activity for each firm affects stability in other parts of the network.  The model is 
estimated on 2006-2010 market data for the 25 largest publicly-traded insurers and 25 largest 
publicly-traded banks.  The evidence shows a propensity for insurers’ and banks’ shocks to move 
in the same direction on average.  We also find stability in the network overall with respect to 
intercept shifts.  Bank return-shocks have a larger impact on the generation of potential network 
instability than insurer return-shocks when examining shifts in the autoregressive process. The 
systematic risk associated with the overall market return is also quite significant. In addition, the 
evidence indicates that not all network boats are lifted or sink collectively.  The evidence also 
shows systemic risk in the presence of day fixed effects (common-date risk) is much more 
important during our sample periods than systemic risk without controls for day fixed effects.  In 
addition, systemic risk accounts for about two thirds of the responses to shocks while common-
date risk account for only about a third of the responses.  In other words, common-date risk is 
important to shocks in addition to systemic risk and systematic risk.  Finally, variations in firm 
value profoundly affects the process dynamics--that is, the larger firms are more likely to be market 
changers.  This evidence provides indirect support for “too big to fail.”   
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I. Introduction 

This study expands the event-study framework to develop a generalized event study 

framework (GES) to examine the interconnections between banks and insurers in a causal 

estimation model. Our study is highly related to studies of systemic risk.  Perceptions as what 

should be counted as systemic risk are many and varied, often tied to specific theoretical constructs 

in finance.  As one example, Billio Getmansky, Lo, and Pelizzon (2012) define systemic risk as 

any set of circumstances that threatens the stability of or public confidence in the financial system. 

We delete “of or public confidence” from their definition because our empirical model does not 

measure public confidence.  In other words, our definition of systemic risk include circumstances 

that threatens the quantitative stability of the financial system, and in our empirical work below, 

specifically includes risk between insurers and banks. 

Historically, insurance leverage, liquidity, and losses were analyzed to determine insurer 

risk.  In recent years, the emphasis has shifted to multi-factored “linkages” as predictors of risk, 

including the financial crisis. In that historical tradition, we identify risk linkages in a casual 

estimation model just as Billio et al. (2012), in an excellent review of the emerging literature, 

identified three measures in the finance literature to estimate the linkages among financial 

institutions. The three linkages include: CoVar, systemic expected shortfall (SES), and distress 

insurance premium (DIP).  Adrian and Brunnermeier (2010) propose CoVar, a measure of value-

at-risk conditional on the financial distress of other institutions.  SES (Acharya, Pedersen, 

Philippon, and Richarson (2011)) is an institution’s “propensity to be undercapitalized when the 

system as a whole in undercapitalized.”  Huang, Zhou, and Zhu (2011) propose DIP as the third 

linkage measure: the insurance premium required to cover distressed losses in the banking system.   
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Billio et al. (2012) argue that the three measures do not predict financial stress well in 

recent years of rapid financial innovation, nor do they reliably predict financial distress in the 

presence of newly connected parts of financial system.  New linkages change the financial 

systemic dynamics when financial institutions are simultaneously distressed.  Though these 

measures may serve as useful early warning indicators, correlations among financial institutions 

during non-crisis periods may not be useful to predict a build-up of systemic risk in times of 

financial crisis. 

Billio et al. (2012) use principal components analysis and pairwise Granger-causality tests 

to estimate the degree of linkages.  It is important to note that they measure correlations directly 

and unconditionally.  The advantage of unconditional measures is that they can detect new 

connections, even when the financial system is not suffering simultaneous losses.  The 

disadvantage of unconditional measures is that only correlations can be measured, and underlying 

causal relationships may go undetected.  Hence, they also perform Granger-casualty tests. 

Several papers examine systemic risk in the insurance industry.  They conclude that 

insurers and reinsurers do not pose systemic risk because primary insurers can spread their risk 

through several insurers or formal reinsurance contracts (Swiss Re, 2003, the Group of Thirty, 

2006, Bell and Keller, 2009). American International Group (AIG) and other insurance companies 

were faulted for starting the financial crisis.  The conclusions of Harrington (2009), Grace (2010), 

and Cummins and Weiss (2014) dispute this claim.  Rather, they suggest that it was financial 

products such as credit default swaps (CDS) of AIG, not their insurance products, that were 

systemically important to the financial crisis.  Mutenga and Parsons (2011) conclude that systemic 

risk is lower in the insurance industry than that of banking industry in European markets. Our 

model provides additional insight about the role of the insurance industry on systemic risk.  
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Like Chen et. al. (2014), our study focuses on the linkages between the banking industry 

and the insurance industry.  Our alternative GES model of network linkages includes all types of 

events that result in large jumps in the market returns of individual financial firms. Instead of 

examining the impact of specific regulatory or weather-related calendar events on stock returns, 

as is usual in standard event studies, we use large standard deviation (SD) shocks in the returns of 

the individual banks and insurers as a proxy for unusual events.  In addition, we include an 

autoregressive process in the event-studies’ returns regression.  The impact of SD shocks on daily 

returns is estimated both as shifts in the intercept and as a rescaling of the autoregressive process. 

These adjustments have impact on system stability. We label these later autoregressive adjustments 

due to major shocks as the ‘process-dynamics’ of the returns.    

We estimate the model on 2006-2010 market data for the 25 largest publicly-traded insurers 

and 25 largest publicly-traded banks (and then, 2011-2016 as a robustness check).  Our main 

findings are summarized below.  First, there appears to be a propensity for insurers’ and banks’ 

shocks to move in the same direction on average.  We interpret this as a reflection of banks and 

insurers being part of the same ‘network’ of financial intermediaries. In addition, the evidence 

indicate that (given an expectation of) positive shocks, not all network boats are lifted collectively, 

nor do (a given expectation of) negative shocks, sink them collectively.  Second, we find that in 

general, the random event shocks of January, April, July and October are larger and statistically 

significant than other months.  These results are consistent with the argument of Ball and Kothari 

(1991) who state that “earnings announcements resolve some uncertainty about future cash flows, 

but the concurrent price reactions increase the variability and covariability of securities’ return 

during the announcements.”  Third, bank shocks are relatively destabilizing compared to insurer 

shocks while we find stability in the network overall.  Bank return-shocks have a larger impact on 
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network instability than insurer return-shocks, and the differential impact of banks over insurers 

increases when restricting the estimates to systemic risk only, that is, after controlling for 

systematic risk and common-date risk.   Common-date risk is related to day fixed effects and 

represents network simultaneous exposure and response which are not fully anticipated in the 

market returns.  Fourth, we also find systemic risk in the presence of day fixed effects (common-

date risk) is much more important during our sample periods (2006-2010, and also for 2011-2016) 

than systemic risk without controls for day fixed effects.  In addition, systemic risk accounts for 

about two thirds of the responses to shocks while common-date risk account for only about a third 

of the responses.  In other words, common-date risk is important to shocks in addition to systemic 

risk and systematic risk.  Fifth, changes in firm value is consistently affects the process dynamics-

-that is, the larger firms are more likely to be market changers.  This evidence provides indirect 

support for “too big to fail.”   

 Our study differs from the literature in several aspects.  First, this study expands the event-

study framework to develop a generalized event study framework (GES) to examine the 

interconnections between banks and insurers in a causal estimation framework.  Our framework 

can be viewed as a rough analogue to error correction models (for co-integrated time series), but 

our study focuses on interconnected financial activity on network stability with autoregressive 

processes instead of cointegrated regressors moving together over time.   Second, while Billio et 

al. (2012) examine the impact of returns of one financial institution (e.g., banking) on other 

financial institutions (e.g., insurance companies), our paper investigates the impact of shocks 

(volatility) of returns of individual banks/insurer on other banks/insurers.  The impact of an 

individual firm on the systemic risk on related financial entities is an interesting and important 
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issue.  Finally, we also provide evidence about the speed at which firms return to their network 

stability after major shocks.   

 

II.  General Empirical Model 

To the standard event study model, we add an autoregressive process for the returns (which 

if it is sufficiently small excludes arbitrage opportunities for most investors), which we denote 

generically as ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , with J indicating the order of the autoregressive process in the returns 

(the autoregressive order as well as coefficient variables were determined empirically): 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑅𝑅𝑡𝑡 + ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + ∑ ∑ 𝜏𝜏𝑘𝑘≠𝑖𝑖𝑘𝑘 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘(𝑘𝑘, 𝑡𝑡)𝑡𝑡 + 𝜇𝜇𝑖𝑖,𝑡𝑡 (1) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is rate of return of a stock i at time t; 𝑅𝑅𝑡𝑡 is the market rate at time t;  ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , is 

autoregressive process in daily returns with J indicating the order of the autoregressive process in 

the returns; and ∑ ∑ 𝜏𝜏𝑘𝑘≠𝑖𝑖𝑘𝑘 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘(𝑘𝑘, 𝑡𝑡)𝑡𝑡  are the  major events. We employ “large” standard 

deviation shocks (big jumps) in returns as the relevant “events” that affect the returns of firm i at 

day t.  As indicated in Equation 1, all firms have their own intercept values in the returns equation 

(the 𝛾𝛾0,𝑖𝑖 vector of coefficients), and their own market betas (the 𝛾𝛾1,𝑖𝑖 vector of coefficients).  All 

firms are assumed to be subject to the same unspecified, empirically determined, autoregressive 

process in their daily returns (the ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1  terms in Equation 1).   

For our shocks to the system, we generated two standard deviation jumps in the firms 

specific returns for each firm for each day (based on the last 20 trading days, roughly the monthly 

number of trades), and then created the treatment “event” variables as follows: 

 SD2— there was a two standard deviation jump, or shock, in market returns relative to the 

last 4 weeks (20 trading days), with the variable = 0 if there was less than a 2 SD jump, and equaled 

to the standard deviation shock if there was a more than 2 standard deviation shock (say, -3.1for a 
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large negative decline of 3.1 standard deviations, 2.7 when there is a positive  2.7 standard 

deviation jump, and 0 if the standard deviation jump is less than 2 in absolute value).1 

SD3—similar for 3-standard deviation jumps. 

 SD4—similar for 4-standard deviation jumps (hence, any SD4 jump is also included in 

SD3 and SD2 shocks, but not necessarily vice versa). 

Using standard deviations as the shock “events” provides a firm-specific “normalization” 

of the treatment inasmuch as each firm has an equal likelihood of generating a SD2, SD3, or SD4 

event in any specified period of time.  That is, the implicit threshold for an “event shock” is relative 

to each firm rather than an absolute threshold for all firms.  The GES approach indicates that the 

market reveals information on each firm’s outlier-returns to every other firm in the network.  All 

firms have a sense of what is ‘unusual’ to each firm and what is not. This approach also allows all 

firms within the network an equal chance within a month/quarter/year to have an event (SDs) 

shock.  Hence, this puts all firms on the same relative basis for impacting the rest of the network, 

and a standard derivation shock-event is akin to a quasi-random event.  Absolute thresholds would 

predictably generate many more events among some firms than others. 

 

Network Shifts vs. Process-dynamics 

 Equation 1 is a firm fixed-effects model, with an assumed common overall autoregressive 

process for returns within this financial network of insurers and banks (the firm fixed effects 

specification is one of our identifying conditions for the generalized event), along with an 

exclusion restriction to be discussed below.  We refine the general ‘event’ specification given next 

to the far right hand side of equation 1, by allowing SD shocks to affect network stability  in one 

                                                           
1 For robustness, we use other variable lengths for the standard deviation model (10 days or 30 days).  The results 
are qualitatively similar.   
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of three ways--either via overall network one-time adjustment to daily returns (∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘), or 

as changes in the autoregressive process-dynamics (∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1 ) or as a vector of 

shifts in systematic risk ((𝑅𝑅𝑡𝑡 ∗ 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1) 𝛾𝛾2,𝑖𝑖), – as given in equation 2 below: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑅𝑅𝑡𝑡 + ∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1 + +∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + ∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽

𝑗𝑗=1 +

(𝑅𝑅𝑡𝑡 ∗ 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1) 𝛾𝛾2,𝑖𝑖 + 𝜇𝜇𝑖𝑖,𝑡𝑡       (2 

Equation 2  shows the intercept shifts, standard deviation shocks  (∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1), the 

autoregressive shifts (∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1 , abd changes in the systematic risk  (𝑅𝑅𝑡𝑡 ∗

𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1) 𝛾𝛾2,𝑖𝑖 represent systemic risk in our causal framework, after controlling for systematic risk 

(the 𝛾𝛾1,𝑖𝑖 vector of coefficients in equation 2), with and without controls for common date risk (the 

day fixed effects). 

 

Network Shifts   

Network shifts are measured as the shifts in the ith network firm’s returns given by a shock 

from one of the other kth firm’s SD shocks (standard deviation shock, 𝑆𝑆𝐷𝐷𝑘𝑘).  As each firm has an 

equal chance, on any given day of a given-sized SD shock, we treat these events as random relative 

to the network (and hence, exogenous).  Firm i finds out about its shock as it occurs, while the 

other networked firms (all 𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖) find out about the shock on the next business day (equivalently, 

overnight), with the network reaction recorded as the shift in returns for all  𝑗𝑗 ≠ 𝑖𝑖.  Firm i is not 

surprised (as the other j firms are) by its own shock that occurred yesterday.  This is our exclusion 

restriction: that a SD shock yesterday by a firm potentially shifts returns for all others (excluding 

yesterday’s shocked firm) today.  
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These network shift responses to shocks are measured as the 𝛼𝛼𝑘𝑘≠𝑖𝑖 coefficients in the 

following expression: ∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘  (𝑘𝑘 ≠ 𝑖𝑖 in the subscript is due to the exclusion restriction).  

This shift in returns due to a specific shock (given by the 𝛼𝛼-coefficient of the SD variable), we 

denote as a network shift—a one-time shift up or down due to a SD shock elsewhere in the 

network.  Hence, the  𝛼𝛼𝑘𝑘≠𝑖𝑖 estimated coefficients from Equation 2 indicate whether the particular 

shocking firm is a complement (𝛼𝛼 > 0) or a substitute (𝛼𝛼 < 0) to other firms in the network.  If 

our financial firms are network stable, a shock on average should not drive the whole system up 

or down.  At the extensive margin of impact (i.e., a simple unweighted count of the number of 

firms that are complements relative to those that are substitutes), the number of complement firms 

should “roughly” equal the number of substitute firms.  

For example, if all firms were complements, then a static-baseline positive shock (where 

‘static-baseline’ positive shock means a shock that is positive in expectation, so firms’ shocks are 

expected to be positive) would bring returns across the whole network up, while a static-baseline 

negative shocks would bring returns across the network down.  If all firms were either 

complements to all other firms in the network, or if all firms were substitutes to all other firms in 

the network, then the network would not return towards its original stability for such static-baseline 

shocks.  Static-baseline shocks (imagine some subset of firms perturbed simultaneously) would 

bring the rest of the network up or down.  This yields our first hypothesis:  

Hypothesis 1a, extensive margin (number): For short-term stability relative to a static-baseline 
shock, there will be an approximately equal number of complement and substitute responses to SD 
shocks in the system, such that the number of network complement responses (𝛼𝛼 > 0) roughly 
equals the number of network substitute responses (𝛼𝛼 < 0).  Hence, in expectation, the system 
will retain roughly the same “static-baseline” stability. 
 

The extensive margin of complementarity in Hypothesis 1a is a good measure of tendency to the 

baseline static-stability if market presence alone is important, rather than market-weighted 
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influence.  As an alternative measure of network influence, we also report the cumulative sum of 

coefficient responses for firms that are complements (hence, the cumulative response if all 

complementary firms simultaneously presented the network with a SD shock) as measured against 

the cumulative sum of coefficient responses for firms that are substitutes.  We call this cumulative 

response comparison the intensive margin of complementarity.  We expect that the positive 

cumulative sum will roughly equal the negative cumulative sum if the network is in baseline static-

stability: 

Hypothesis 1b, intensive margin: For short-term stability relative to a static-baseline shock, the 
sum of positive responses to shocks will roughly equal the sum of negative responses to shocks, 
namely, |∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖+ |𝑘𝑘 ≈ |∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖−

𝑘𝑘 |, where 𝛼𝛼+ indicates summation a positive network shift 
response, and 𝛼𝛼− indicates a negative network shift response.  
  

Process-dynamics  

In Equation 2, we also model shocks as affecting the speed at which firms return to their 

network stability, conditional on standard deviation (SD) shocks.  Empirical estimates show that 

the autoregressive responses (∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 ) in daily returns indicate regression towards the mean, 

as the ∑ 𝜃𝜃𝑗𝑗 𝑗𝑗
≤ 0 for the three lags in the empirical model.2  Our empirical speed of adjustment 

results of three lagged days is consistent with Gottardo’s Italian stock market results (2011, p. 739) 

that complete price adjustments are completed “between three and five days of trading, this is true 

for the index and the futures but also for every single stock,” and also consistent with the empirical 

results of Damodaran (1993), Patell and Wolfson (1984), and Hasbrouck and Lo (1987). 

Hence, the term, (∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1  ), in Equation 2 represents how shocks 

affect the stability of dynamic process—that is, how quickly, if at all, the network returns towards 

                                                           
2 In the initial estimates, we experimented with an up to 8 lagged values in the autoregressive 
process, but only the first three reported here were statistically significant. 
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its original stability given a shock. The nonlinear specification in Equation 2 allows this regression-

towards-the-mean pattern for the network to be altered by SD shocks from other firms within the 

network.  For example, looking at the 𝜋𝜋 term in Equation 2, it’s clear that when 𝜋𝜋𝑘𝑘≠𝑖𝑖 = 0 there is 

no change in the baseline regression towards network stability, given a shock for firm k.  

Otherwise, the degree of shifting towards stability depends on the value of the SD shock.  If  𝜋𝜋 >

0, then the return to the stability speeds up.  For example, if 𝜋𝜋 = .5 then for the smallest standard 

deviation shock of 2 (𝑆𝑆𝐷𝐷𝑘𝑘 = 2) in our study, the speed to stability doubles as follows: 

 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖,𝑡𝑡 + ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + ∑ (. 5)𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽

𝑗𝑗=1           

= 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖,𝑡𝑡 + (1 + .5 ∗ 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1)(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 )              

 = 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖,𝑡𝑡 + (1 + .5 ∗ 2)(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1              (3) 

 (when 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(= 2)𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋𝑘𝑘≠𝑖𝑖 = .5) 

Hence, for a given 𝑆𝑆𝑆𝑆 shock, the speed to equilibrium is doubled where 𝜋𝜋 = ( 1
𝑆𝑆𝑆𝑆

)  (as illustrated 

in Equation 3, and more than doubled when  𝜋𝜋 > ( 1
𝑆𝑆𝑆𝑆

) ).  If 0 > 𝜋𝜋 > −( 1
𝑆𝑆𝑆𝑆

), then the speed of the 

return to stability is slowed down.  

Going further, if 𝜋𝜋 < −( 1
𝑆𝑆𝑆𝑆

), then the return-to-mean process becomes destabilizing 

relative to the initial stability conditional on the respective shock.   Suppose a given bank has 𝜋𝜋 =

−.5  for a SD shock of three (𝑆𝑆𝑆𝑆 = 3), then the net adjustment to the new stability is, given our 

results above, (1 + (−1.5))(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1  = −.5(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽

𝑗𝑗=1 , so that returns are no longer 

converge back towards the original stability.  Rather, they are moving towards a new stability that 

reflects the sign of the SD shock: a positive shock for a firm with a sufficiently negative value of 

the parameter, 𝜋𝜋, will tend to rise the network stability returns to a higher level.  If that same bank 

with the sufficiently negative value of the parameter 𝜋𝜋 had a large negative shock, then the network 
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stability returns would be lowered.  Hence, banks and insurers with larger (in an absolute value 

sense) negative 𝜋𝜋 will be market changers in the sense of driving the network to a new stability. 

 On the basis of prior literature (Cummins, Lewis, Wei, 2006; and especially Chen et al, 

2014, who find that banks have a stronger impact on insurers than vice versa, and that banks create 

significant systems risk for insurers but not vice versa, using a very different approach than the 

one employed here), we expect that there will be more market changers (𝜋𝜋 < −( 1
𝑆𝑆𝑆𝑆

)) among banks 

than insurers: 

Hypothesis 2a: We hypothesize that market changers among our sample of larger banks and 
insurers will be in the minority of all network firms (that is, there are relatively few firms with 
𝜋𝜋 < −( 1

𝑆𝑆𝑆𝑆
)), but that—given the prior literature—more of these will be banks than insurers.  

 

Hypothesis 2b:  As shown above, that firms with 0 > 𝜋𝜋 > −( 1
𝑆𝑆𝑆𝑆

)  in the network will be slower to 
reach stability than other firms (outside of market changers). If additional regulatory constraints 
limits the financial flexibility of banks or insurers, differential regulatory pressures will affect 
speed of adjustments. However, as none of the firms in our sample changed domicile during the 
sample period, time-invariant regulatory differences will be held constant in the analysis by our 
firm fixed effects, which we expect to the statistically significant. 
 

Systematic Risk Shifts 

Given the discussion above regards the prior empirical literature on the importance of banks 

relative to insurers in generating market risk, we expect the following: 

Hypothesis 3: The SD shock shifts associated with banks to be greater than the SD shock shifts 
associated with insurers, or that |∑ 𝛾𝛾2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|𝑘𝑘 > |∑ 𝛾𝛾2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 |. 
 

Separating out Common-Date Risk from other forms of Systemic risk 

As discussed above, measures of systemic risk in the GES framework have already 

accounted for systematic risk (again, the 𝛾𝛾1,𝑖𝑖 vector of coefficients in equation 2). Thus, our 

measures of systemic risk are made independent of systematic risk.  What about common-date 



13 
 

risk, which captures the common shocks that are not fully captured by the market return: is that 

different from systemic risk (we think so), and should it be confounded with systemic risk (we 

think probably not)?  Hence, we examine results without day fixed effects (in which case, our 

systemic risk may be confounded with common-date risk which captures the common shocks that 

are not fully captured by the market return on the daily basis), and results with day fixed effects 

which eliminates common-date risk, leaving a cleaner estimate of systemic risk only.  For example, 

if a hurricane hits East Coast, it may severely affect an insurer which underwrites heavily on the 

coastal area of East Coast, but it may only lightly affect insurers which underwrite nationally.  In 

addition, the hurricane may not affect banks at all.  Comparing the coefficients of these two 

alternative specifications (with, and without, day fixed effects) allows us to discern something 

about the relative importance of systemic risk, given our model-specific definitions.  The reason 

that the systematic risk variables are not perfectly collinear with day fixed effects is that systematic 

risk is measured in Equations 1 and 2 as interactions with firm fixed effects (that is, other variables 

multiplied by the firm fixed effects), and hence not collinear with any subset of them (since not all 

firm FEs can be in the model simultaneously when the model contains an intercept). 

Again, the key difference between systemic risk and common-date risk—within the 

structure of our model—is that systemic risk evolves over time differentially across firms within 

the network, while common-date risk represents network simultaneous exposure and response 

(and, hence, controlled by our day fixed effects).  Hence, we propose the following additional 

hypothesis: 

Hypothesis 4. We hypothesize that systemic risk remains, even after controlling for daily FEs (i.e., 
controlling for common-date risk).   
  

III. Descriptive Statistics 
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Stock Returns 

 The daily returns and shocks in Table 1 summarize, in board terms, trends in the data.  The 

average returns in 2006 and 2007 is small.  For example, the mean of daily return is 0.0004 and 

0.0010 for insurers and banks, respectively.   The mean returns declined in 2008 for both insurers 

and banks then rebounded in 2009 and 2010.  For example, the mean of daily return is 0.0022 and 

0.0021 for insurers and banks, respectively in 2009. The spread in the returns was greatest for these 

firms in 2008, mirroring more general market responses.  Specifically, the spread in the returns is 

0.0034 and 0.0033 for insurers and banks between 2008 and 2009, respectively. 

 

Standard Deviation (SD) Shocks 

Table 1 also presents the results of standard deviation shocks over time.  Recall that 

“shocks” in this paper are measured in deviations up or down.  The shocks are much higher for 

insurers in the first three years of our sample than in 2009 and 2010.  For insurers the 2 standard 

deviation (return) is 0.79, 0.89, and 0.90 in 2006, 2007, and 2009, while the standard deviation is 

0.67 and 0.73 in 2009 and 2010.  For banks, the results are similar.   

The distribution of shocks in Table 2 indicate some bunching of both positive and negative 

shocks over the sample period.  We first examine month-by-month patterns between insurers and 

banks.  Note for the SD2 and SD4 (and to a lesser extent, the SD3) shocks-by-month data, there 

appears to be a propensity for insurers and banks shocks to move in the same direction.  We 

interpret this as a reflection of banks and insurers being part of the same ‘network’ of financial 

intermediaries. In particular, whenever the positive shocks outweigh the negative shocks for 

insurers, the banking pattern has a tendency to move in the same direction.3  Likewise, when 

                                                           
3 For example, see February – May in 2009. 
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negative shocks outweigh positive shocks for one of the two paired industries, negative shocks 

tend to outweigh positive shocks for the other industry. We denote such examples as ‘similar 

patterns’.  So for February 2006 (January is excluded as it provides the initial baseline to measure 

standard deviations based on the last 20 trading days), insurers have 15 positive shocks and only 

10 negative shocks (15>10), and banks have 27 positive shocks and only 1 negative shock. For 

March, insurers are 14>11 while banks are 11=11, so we count this also as a ‘similar pattern’ (as 

the banking pattern does not contradict the insurer pattern). For May 2006, for insurers it is 12<19, 

while for banks, it is similarly 20<23. 

The first dissimilar pattern for SD2 shocks is February 2008, where insurers have slightly 

fewer positive than negative shocks (8<9), but banks have more (5>4).  When closely examining 

all the SD2 shock patterns between insurers and banks, a second aspect of similar vs. dissimilar 

shocks seems apparent (as evident in the February 2008 example): the absolute differences 

between positive and negative shocks tends to be larger for similar patterns than they are for 

dissimilar patterns.  For example, the absolute difference for the February 2006 similar pattern is 

|15-10| + |27-1| =31, while the absolute difference for the February 2008 dissimilar pattern is |8-9| 

+ |5-4|=2.   

Note the prevalence of similar patterns. Of the 59 complete months (January 2006 is 

excluded as the initial baseline required for the computation of shocks), almost five-sixths of the 

time, SD2 shocks are similar—there are only 10 of the 59 shocks that are definitely dissimilar.   

SD4 shocks are similar about four-fifths of the time—there are only 12 of the 59 patterns that are 

definitely dissimilar.   The least strong similarity relationships are for SD3 shocks, where about 

three-fourths of the patterns are similar—there are only 14 of the 59 patterns that are definitely 

dissimilar. 
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To examine whether the absolute differences are related to the similarity patterns for both 

banks and insurers, we need to look at the ‘means’ of absolute values of positive-negative 

differences for banks and insurers.  As there is no reason to suppose that such absolute differences 

will be unimodal, let alone normally distributed, we employ the Wilcoxon rank-sum test (with 

exact probability significance computations for our smaller samples), a nonparametric test of 

absolute differences between similar and dissimilar patterns for the combined bank/insurer sample.  

This test does not rely on normality, even asymptomatically. The mean of absolute differences for 

similar patterns are 22.8 for similar patterns, but only 11.4 for definitely dissimilar patterns.  The 

differences are statistically significance at the 5 percent level (1.7%).  This reinforces, in an 

alternative dimension, our findings that banks and insurer patterns of shock move together.  

 The quarterly and annual shocks are best summarized by the regression of the number of 

shocks on annual dummy variables and monthly dummy variables (Table 2a). We first focus on 

January, April, July, and October.  Earnings for publicly traded companies are released a week or 

two after each quarter ends—in general, one or two weeks after each December, March, June and 

September. That is, the companies in this sample will tend to release their earnings data by the 

middle of January, April, July and October.  Hence, the greater number of statistical shocks, 

upwards and downwards, during those periods.  We find that in general, the coefficients of January, 

April, July and October are larger in magnitude and more statistically significant than other 

months, on average.  These results are consistent with the argument of Ball and Kothari (1991) 

who state that “earnings announcements resolve some uncertainty about future cash flows, but the 

concurrent price reactions increase the variability and covariability of securities’ return during the 

announcements.”   
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IV.  GES Model Results:  Estimated Network Shifts and Process-dynamics  

Estimation 

 Equation 2 is nonlinear in its parameters.  Given the term, ∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1 , 

an iterative process was necessarily employed when using our linear econometric models (Garch 

and clustered standard error models) for the error structure.  The 𝜃𝜃𝑗𝑗  coefficients in 

∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1  were initially set on the basis of a nonlinear OLS procedures that 

did not account for any special restriction on the error structure.  Then, with the 𝜃𝜃𝑗𝑗  fixed a priori 

in the process-dynamics terms, the other parameters were initially estimated a Garch model, and 

the autoregressive process 𝜃𝜃𝑗𝑗  in the term, (𝑅𝑅𝑡𝑡 ∗ 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1) 𝛾𝛾2,𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , were estimated, along 

with the other parameters: 𝛾𝛾0,𝑖𝑖, 𝛾𝛾1,𝑖𝑖,  𝛼𝛼𝑘𝑘≠𝑖𝑖, 𝜋𝜋𝑘𝑘≠𝑖𝑖.  The converged values from the term, (𝑅𝑅𝑡𝑡 ∗

𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1) 𝛾𝛾2,𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , for 𝜃𝜃𝑗𝑗 , were fixed as values for 𝜃𝜃𝑗𝑗  in ∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗

𝐽𝐽
𝑗𝑗=1 , and then the model 

was refitted.  The convergence criteria were that none of the estimated 𝜃𝜃𝑗𝑗  (those given in Tables 3 

and 4, and the appendix tables) varied from the initial fixed 𝜃𝜃𝑗𝑗  by more than 2 integer values in the 

third decimal place.  This iterative process steadily converged, except for Garch models with daily 

fixed effects (there was no convergence for the FE Garch models employing either STATA or 

SAS software).  So the estimated Garch models (Appendix Tables B3 and B4) could not 

differentiate systematic from systematic risk for our model in Equation 2.  Tables 3 and 4 where 

estimated with standard errors clustered by day—specifications employed along with Garch 

models to estimate returns.  Comparing Tables 3 and 4 (clustered standard error models) to Table 

B3 and B4 (Garch estimates), signs and magnitudes of estimated coefficients are roughly the same 

(compare especially the other magnitudes of the estimated shifts in 3a relative to B3a, and 4a 

relative to B4a).  The same are true for the 2011-2017 models, as well: compare 6a to B6a, and 7a 
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to B7a, for example.  However, the standard errors are much more conservative for the clustered 

standard error estimators both in terms of joint significance of the effects as well as the individual 

t-statics. (That is, there are far fewer statistically significant results for the clustered standard error 

estimators, which we focus on here, than for the Garch estimators in the appendices). 

Network Shifts 

 Table 3 reports estimates of the 𝛼𝛼 coefficients from Equation 2, the ‘network shift’ effects 

due to return shocks.  Consistent with Hypothesis 1 on the effect of shocks on network stability, 

there are approximately the same number of complements (𝛼𝛼 > 0) as there are substitutes (𝛼𝛼 < 0) 

in the network, within either financial group and across all specifications of shock types (SD2, 

SD3, and SD4). For example, there are 23 complements and 25 substitutes in 2 Stand Dev Shocks 

(No day FE) column (two firms, CINF and CMA, are left off due to collinearity restrictions).   

Table 3a reports the sums of coefficients.  There are two comparisons to keep in mind in 

reviewing the intensive margins in Table 3a, summarizing the coefficients in Table 3.  The first 

comparison is the shifts of positive vs. negative cumulative shock-adjustments (these cumulative 

sums form the intensive margin of the value of shock adjustments, whereas the number of positive 

and negative estimated firm responses reflect the extensive margin is reported Table 3 above).  The 

second comparison is the between sector movements in the cumulative absolute shifts, which 

reflect the relative importance of banking vs insurance.     

With respect to the first comparison on the intensive margin (positive vs. negative shocks), 

we expect the absolute value of positive shifts should roughly balance the absolute value of 

negative shifts.  These “intercept” shifts due to shocks are measured as the coefficients in 

∑ 𝛼𝛼𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1in Equation 2 (which again, are significantly different from zero as indicated by 

the last row of joint-F values in Table 3). Focusing on the “No Day FE” column, derived from 
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Table 3 coefficients, not only are the positive and negative coefficients of roughly equal count (the 

extensive margin of impact as shown above), overall, they have collectively almost an identical 

coefficient-sum of positive and negative responses.  For example, for SD2 insurer results in 

specifications without day FEs, as  given in the upper left hand section of Table 3a,  .0069 (sum 

of positive coefficients) is approximately equal in magnitude to -.0073 (sum of negative 

coefficients).  SD2 bank shifts given just below these insurer shifts, indicate a cumulative value of 

.0050 positive shifts for banks, approximately equal in magnitude to a -.0048 negative shifts for 

banks during the same 2006-2010 period.  The “No Day FE” columns across Table 3a reflect 

similar equalities for SD3 and SD4 shifts as well.  This supports Hypothesis 1b, For short-term 

stability relative to a static-baseline shock, the sum of positive responses to shocks will roughly 

equal the sum of negative responses to shocks. 

 Results with the day FEs in the model removes the common-date risk component, leaving 

only the systemic risk component of network shifts, process-dynamics, and network shifts in 

systematic risk.  This helps distinguishing results between insurers and banks in terms of systemic 

risk without common-date risks effect, the second comparison represented in Table 3a.  For the 

SD2, SD3 and SD4 shifts in the “No Day FE” cumulative totals, insurers always have a greater 

impact than banks.  Overall for the SD2 (two-standard deviation) shocks, the cumulative absolute 

values of insurer shifts is .0142, compared to .0098 cumulative shifts for banks (the fourth versus 

sixth row of the left hand column in Table 3a).  That insurer shifts are at least as large as bank 

shifts when systematic risk is included in the estimates, is also true for SD3 shocks (roughly equal, 

.0157 vs .0163) and for SD4 shocks (.0199 vs. .0185).  However, when common-date risk is 

removed, the systemic risk results reverse this trend and now banks are systemically more 

important than insurance for shift responses.  For SD2 shocks, banks cumulative network effects 
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on static-baseline stability adjustments (.0128) are only slightly higher than insurers cumulative 

network effects (.0119), but the reversal nearly doubles for SD3 and SD4 systemic risk adjustments 

as well (for SD3, banks cumulative is .0227 while insurers is only .0115). These results are 

consistent with the literature that systemic risk is lower in the insurance industry than that of 

banking industry (Swiss Re, 2003, the Group of Thirty, 2006, Bell and Keller, 2009). 

In summary, the results of Table 3 and Table 3a indicate that static-baseline upward shocks 

do not lift network boats collectively, nor does a static-baseline downward shock sink them. With 

respect to collective shocks, about half the firms in the networks act as ‘substitute’-inducing 

downward shifts, and about half the firms in the networks act as ‘complements’-inducing upward 

shifts in returns.  This is true overall, and it is true within the insurance and banking sectors as well 

(Tables 3 and 3a).  Finally, we find systemic risk is lower in the insurance industry than that of 

banking industry. (This is true for the Garch estimators in the appendix as well.) 

 

Process-dynamics 

Process dynamics in this model are estimated by the baseline process-dynamics term 

(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗
𝐽𝐽
𝑗𝑗=1 ), and changes in the speed to convergence according given a SD shocks (changes in 

process dynamics are given by the 𝜋𝜋𝑘𝑘≠𝑖𝑖 terms in the vector of effects measuring changes in 

process-dynamics: ∑ 𝜋𝜋𝑘𝑘≠𝑖𝑖𝑘𝑘 𝑆𝑆𝐷𝐷𝑘𝑘(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽
𝑗𝑗=1  ).  The results are given in Table 4.  Again, Table 

4 contrasts the “No day FE” results (on the left hand side of each paired set of models, that includes 

systemic with common-date risk) with the day fixed-effect results (on the right hand side that 

controls for common-date risk, so only records the systemic risk response).  Overall, the results 

describe a financial network that returns to stability after a SD shock, though bank shocks are 

relatively more destabilizing than insurer shocks—that is, there are more market changers among 
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banks than among insurers for SD2 and SD3 shocks, consistent with our hypothesis 2a (though 

about an equal number of market changes for banks and insurers in the SD4 shocks).  As indicated 

by the F-statistic near the bottom of Table 4 for the joint significance of the process dynamic shifts, 

they are quite significant overall in 2006-2010. 

 The first three lagged terms in Table 4, estimating the common tendency of past returns 

affecting future returns. We find those significant coefficients are negative, indicates a network 

generally returning to stability.  The results indicate a given positive prior return tends to be 

mitigated to a lower present return through these lagged effects and a negative prior return tends 

to be followed by upward movement in the present returns, again, as reflected by the negative 

coefficients on lagged returns.   

Note two important patterns in the autoregressive terms.  First, across all standard deviation 

shock types, there seems to be this common relative stability also in the effect of shocks on lagged 

coefficients when they are significant. SD2 coefficients are very similar to SD3 process shock 

coefficients, which in turn are not so similar to SD4 process shocks.   Second, regression to the 

mean (via the autoregressive structure) is stronger holding common-date risk constant: for the SD2 

shifts, -.0389, -.0137, and -.0333 yields a stronger regression to the mean propensity than -.0213, 

.0021, and -.0316.  Hence, it cannot be common-date risk (or the volatility of simultaneous, 

common risk) that is driving the process dynamics that we observe in the network.  

Again, we find bank shocks are relatively more process destabilizing for SD2 and SD3 

shocks, that is, there are more market changers among banks than among insurers.  For example, 

in the far left hand column there are only two insurers during the 2006 to 2010 period that are 

statistically significant market changers: HUM and MFC, but five banks that are statistically 

significant market changers: BAP, BBT, CM, , KEY and RY.  Again, these firms are market 
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changes as the estimated 𝜋𝜋 < −� 1
𝑆𝑆𝑆𝑆
� 𝑜𝑜𝑜𝑜 𝜋𝜋 < −�1

2
�  in the case of SD2.  Note that there are many 

other firms, in both sectors, estimated to have large negative process dynamic effects but are not 

statistically significant.    

To summarize the network dynamic process effects, we tabulate the relative size of the 

positive and negative shock coefficient values, by financial firm type in Table 4a, in the same way 

that Table 3a sums the intensive margin of the results in Table 3. If all of the positive insurers 

coefficients are summed (for the “No Day FE” specification for SD2 in the far left hand column, 

.257 + .874 + .280 + .2891+ 1.614 + …= 9.647), they collectively are greater than the sum of all 

positive bank coefficients for the “No Day FE” model (8.184).  Recall that a higher sum of positive 

coefficient means that the return to the stability speeds up, for those firms represented in the 

summation.  Negative bank responses (-13.125, for SD2 shocks in the No Day FE model) are 

greater in absolute impact than negative insurer responses (-8.702, for SD2 shocks).  In other 

words, the return-to-mean process associated with bank shocks becomes destabilizing because the 

average coefficient (-13.125/24 = -0.55) is less than -0.5.  So bank shocks are relatively 

destabilizing compared to insurers shocks—consistent with prior research (Chen et al, 2014), for 

SD2 and SD3 shocks.  For the relatively rare SD4 shocks (see Table 2), the two sectors are equally 

destabilizing.  The relative destabilizing influence of banks over insurers holds for SD2 and SD3 

shocks, whether or not we control for common-date risk (note this pattern also holds for the Garch 

estimates in Table B4a).   

Comparing the results with and without the day fixed effects (Day FE), we see that most 

of the risk observed for our process dynamic responses is systemic risk, accounting for about two 

thirds of the responses, with common-date risk accounting for only about a third of the responses. 

For the SD2 cumulative responses, given in the left two hand columns, the ratio of systemic risk 
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to total risk (systemic plus systematic) is 13.302/18.349= .72 for insurers; while for banks, 

14.473/21.309=.68.   Hence, these SD2 and SD3 results are consistent with the literature about 

systemic risk in the US (Swiss Re, 2003, the Group of Thirty, 2006, Bell and Keller, 2009, 

Harrington (2009), Grace (2010), and Cummins and Weiss (2014)), and with Baluch, Mutenga 

and Parsons (2011) which conclude that systemic risk is lower in the insurance industry that that 

of banking industry in European markets, even after we adjust for common-date risk.  Moreover, 

we find that systemic risk is much more important than common-date risk, at least for this period. 

 

V.  Firm characteristics and Adjustment Speeds 

Gottardo (2011) finds that firm size (measured by the log of capitalization at the end of the 

sample period, and by a dummy variable for being one of the six largest firms), has the largest and 

only statistically significant impact on adjustment speeds for his sample of Italian firms.  In 

addition to firm value (Value, the capitalized value of each firm at the end of each trading day), 

we also include a variable for the volume of shares traded each day for each firm (Volume), and a 

variable for the number of analysts following each firm each day of our sample period (Analysts).  

The number of analysts following is obtained from I/B/E/S.  As we include a dummy variable for 

each firm, we implicitly control for all time invariant, geographic specific, regulatory pressures as 

none of the firms in our sample changed their regulatory domicile during the sample period.   

Table 5 reports the results of stock returns on all the variables employed in our prior 

models, plus the additional parameterization of firm-associated characteristics within our model, 

even though only the parameters of the firms’ characteristics are included in this table (other 

variables not shown here, have the same rough magnitude and statistical significance as indicated 

in the earlier tables).  As is obvious, the impact of these firm characteristics show a remarkably 



24 
 

stable influence on the market returns across our various specifications of type of firm shocks and 

treatment of common-date risk.   

As can be seen in the first three rows of Table 5, increases in firm value or volume of daily 

trades are associated with higher daily stock market returns.  Number of analysts following a given 

firm has no discernible impact on the firm’s returns.  These are the “main” effects of these firm 

characteristics, in addition to the interactions of these variables with the process dynamic 

interactions included in the last three rows.   

 However, our main interest with Table 5 is in the last three rows, which indicate the 

common change in process dynamics with respect to daily market returns associated with the 

indicated variables.  Interestingly enough, changes in firm value is the only thing that consistently 

affects the process dynamics--that is, the daily capitalized value of our sample firms make them 

more likely to be market changers (as indicated by the negative coefficients).  This evidence 

provides indirect support for “too big to fail.”  We also find firm trading volume has some effect 

on a firm’s propensity to be a market changer.  

 

VI.  2011-2016 Estimates, Robustness Checks 

 For robustness, we analyze the data in 2011-2016, a period of relative financial stability 

after the financial storms of 2006-2010.  Appendix Table A2, reproduces the pattern of SD shocks 

for 2011-2016, that was given in Table 2 for the 2006-2010 period.   The results and discussion of 

Table 2 holds for Table A2 (Appendix A): most SD2, SD3, and SD4 shocks are recorded in the 

month after the quarterly earnings reports’—January, April, July, and October.  

To see if our model fits the data in 2011-2016, we re-estimate our clustered standard error 

models for the later period with the results given in Tables A3 and A4 in Appendix A. The results 
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of Garch models without day Fes are provided in Tables B3 and B4 (Appendix B).  Our expectation 

was that the responses would be somewhat muted in this later calmer period with less variance in 

the returns, but follow the same general patterns we found in the 2006 to 2010 period.  Specifically, 

we expected to estimate an autoregressive process that tended to return to a network stability, and 

that although banks return shocks would continue to be relatively important to our network than 

insurers’ return shocks, that banks’ collective role as market changes would be mitigated.  This 

suggests the following hypotheses: 

Hypothesis 4a: Given the financially calmer period of 2011 to 2016, we expect the estimated 
network shifts and process dynamic effects to be relatively smaller in value than they were for 
2006-2010, though still important. 
 
Hypothesis 4b: We expected that systemic risk would be relatively more important (as part of total 
risk), since 2006-2010 was a period of unusual systematic risk in the economy. 
 
Hypothesis 4c:  We expect that banks will be relatively more important than insurers as market 
changers in 2011-2016, though their relative role in changing markets will be smaller during 2011-
2016 than during the turmoil that prevailed in 2006-2010. 
 
 The network shifts in Table A3 follow the same general pattern as estimated in Table 3 for 

the earlier period, though the relative magnitude of network adjustments in the intercepts given a 

SD shock has shifted away from its stability tendencies somewhat. Like the 2006-2010 sample, 

the 2011-2016 static-baseline stability results approximately hold (with respect to SD shocks on 

the model intercepts), as substitutes and complements are roughly evenly balanced across all 

specifications in that there are roughly as many complements as substitutes.  Table A3a indicates 

that the network shift effects tend to be balanced overall even though they are not balanced within 

each sector. Note for example, that for all specifications, the sum of positive coefficients for 

insurers is always less than the sum of all negative coefficient in absolute value, while banks 

exhibit the opposite trend.  These sectoral differences tend to cancel each other (see for example, 
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the 3SD results with Day FEs: .0017 + .0059≈ .0043 + .0032) such that that overall effect is close 

to zero.  This evidence partially and weakly supports Hypothesis 4a. 

 Comparing Table A3a to Table 3a, both insurers’ shifts due to shocks and banks’ shifts due 

to shocks are lower in magnitude (both positive and negative shifts) in 2011-2016 than they were 

in 2006-2010. This also supports hypothesis 4a. 

Comparing cumulative jumps pairwise (“No Day FE” vs. “Day FE” for SD2 shocks, then 

the same comparison for SD3, and for SD4 shocks), we find common-date risk in network shifts 

is at least as important in Table A3a as they were in Table 3a, but the relation is reversed.  For all 

types of shocks, the insurer results show that systemic risk without controlling for common-date 

risk is now larger than systemic risk controlling for common-date (common-date risk in 2011-

2016, apparently offsets part of the systemic risk).  For insurers, for example, .0043 (systemic risk 

cumulative network response controlling for common-date risk) > .0036 (systemic risk cumulative 

network response not controlling for common-date risk).  This result supports hypothesis 4b.  

Moreover, holding common-date risk constant, banks exhibit much more systemic risk through 

network shifts than insurers (.0074 > .0043, for SD2 cumulative network shifts, for example, the 

second column from the left).  This supports Hypothesis 4c.  This result is expected because banks 

influence on the economy seems to be much higher than insurers, based on prior research and our 

general findings here. 

 Upon reflection, it is not too surprising that the cumulative process dynamic coefficients 

in Table A4a (2011-2016) are cumulatively larger than the coefficients in Table 4a (2006-2010).  

That is, while network shifts are much less pronounced post 2010 than prior to 2010 (tables 3a vs. 

A3a), process dynamics continues to be important (the sums in A4a are larger than the sums in 

Table 4a).  Table A4a are effects are larger in part because of the mechanical effect of a diminished 
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autoregressive process, so that larger coefficients in A4a is still consistent with hypothesis 4a.  That 

is, banks still appear to have a greater propensity to be network market changers, but that changing 

via SD shocks takes place with respect to a lowered autoregressive returns to the mean function. 

  

VII. Concluding Comments 

The purpose of this study is to examine networks of interconnected major activity between 

banks and insurers.  Specifically, our paper develops new methodological tools that offer insight 

into the explicit nature of systemic risk in the first investigation of the impact of shocks (volatility) 

of returns of banks on insurers and vice versa.  Volatility of returns are important because volatility 

is the number one concern of investors other than returns.   

We estimate the model on 2006-2010 market data for the 25 largest publicly-traded insurers 

and 25 largest publicly-traded banks and summarize our findings below.  First, there appears to be 

a propensity for insurers and banks move in the same direction after a major shocks.  We interpret 

this as a reflection of banks and insurers being part of the same ‘network’ of financial 

intermediaries. Second, we find that in general, the coefficients of January, April, July and October 

are larger and statistically significant than other months.  These results are consistent with the 

argument of Ball and Kothari (1991). Third, bank shocks are relatively destabilizing compared to 

insurer shocks for the turmoil of 2006-2010, but the pattern is not so clear cut for the calm that 

followed (2011-2015).  But through both periods, and across all specifications, we find systemic 

risk is much more important during these periods than common-date risk. 

 Results from the 2011 to 2016 varied somewhat from the 2006-2010 results: the network 

shifts still suggest a static-baseline stability in the presence of shocks, though the results were not 

as large as they were in the earlier (financially tumultuous) period.  The relative calm of 2011 to 
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2016 period yielded common autoregressive processes that were less significant by themselves 

(less chance of “arbitrage” opportunities in the absence of large shocks), though the importance of 

shocks to that process remained important in the latter period.  Systematic risk is even less 

important, and the systemic SD shock responses more muted.  It would be interesting to know 

whether these muted responses were an adaptive-markets response (Lo, 2004; Lo, 2005).   

In terms of the robustness of the results, note common “lead” values of the shocks (without 

the exclusion restriction that identifies past effects), would be controlled by the daily fixed effects 

(common-date risk). Recall that common-date risk is defined as the network exposure and response 

which are not fully captured by the market return during that specific date.   Hence, the 

identification of systemic risk and the control for lead shocks are both accomplished by the daily 

FEs specification.  Interestingly, daily FEs (and hence, controlling for common-date risk) mattered 

a great deal to the estimated responses in 2006-2010, but mattered relatively little in the 2011-2016 

period.   

Though we developed the estimators here as an extension of event study framework, our 

models can be approached from an econometric perspective as well.  In particular, the impulse-

response function literature (Lütkepohl, 2008; Hamilton, 1994) has focused on how a dynamic 

system (such as autoregressive stock returns for a firm) reacts to a brief signal (here the SD shocks 

elsewhere in the network), called the impulse.  Future research may benefit from examining the 

synergies between that econometric literature and the event study framework developed here. 

Our research suggest other issues to be explored.  Are insurers, like AIG, that are also 

important entities in the banking sector, behaving differently than insurers that provide insurance 

services exclusively? What would happens if 2006-2016 were treated as a single stable period of 

response except for subperiod crisis of 2007-2008? Do the network dynamics change mid crisis? 
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Are the same firms that are systemically important outside the crisis also important mid crisis? 

These would interesting issues to be taken up in future research. 
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Table 1.  Daily Returns and Standard Deviation Shocks by Financial Firm Type 
  Insurers Banks 
  Mean S.D. (ret) Minimum Maximum Mean S.D. (ret) Minimum Maximum 
2006 Return 

2SD shock 
3SD shock 
4SD shock 

.0004 

.0300 

.0051 
-.0053 

.0129 

.7906 

.6101 

.5135 

-.2031 
-13.0303 
-13.0303 
-13.0303 

.1019 
7.8774 
7.8774 
7.8774 

.0010 

.0645 

.0289 

.0201 

.0125 

.7670 

.5577 

.4359 

-.0689 
-7.1141 
-7.1141 
-7.1141 

.1375 
16.8305 
16.8305 
16.8305 

2007 Return 
2SD shock 
3SD shock 
4SD shock 

.0004 

.0030 

.0075 

.0152 

.0157 

.8859 

.6947 

.5379 

-.0832 
-9.5849 
-9.5849 
-9.5849 

.1049 
16.3182 
16.3182 
16.3182 

.00001 
-.0153 
-.0147 
-.0174 

.0183 

.8421 

.5775 

.4178 

-.1083 
-7.3925 
-7.3925 
-7.3925 

.1326 
5.2474 
5.2474 
5.2474 

2008 Return 
2SD shock 
3SD shock 
4SD shock 

-.0012 
-.0134 
-.0071 
-.0091 

.0586 

.8979 

.6650 

.5215 

-.5441 
-13.2292 
-13.2292 
-13.2292 

1.0236 
9.5202 
9.5202 
9.5202 

-.0012 
.0106 
.0278 
.0127 

.0511 

.8484 

.6200 

.4400 

-.4107 
-7.176 
-7.176 
-7.176 

.5782 
10.9268 
10.9268 
10.9268 

2009 Return 
2SD shock 
3SD shock 
4SD shock 

.0022 

.0150 

.0042 
-.0003 

.0481 

.6681 

.4560 

.3430 

-.3819 
-7.7444 
-7.7444 
-7.7444 

.6138 
7.1658 
7.1658 
7.1658 

.0021 

.0123 
-.0024 
-.0072 

.0522 

.7106 

.5069 

.3716 

-.5904 
-14.3282 
-14.3282 
-14.3282 

.4841 
4.9929 
4.9929 
4.9929 

2010 Return 
2SD shock 
3SD shock 
4SD shock 

.0008 

.0075 
-.0009 
-.0021 

.0187 

.7319 

.4887 

.3184 

-.1400 
-7.1133 
-7.1133 
-7.1133 

.1266 
6.7334 
6.7334 
6.7334 

.0009 
. 0199 
.0154 
.0053 

.0216 

.7353 

.4687 

.2946 

-.1079 
-6.086 
-6.086 
-6.086 

.2299 
7.1754 
7.1754 
7.1754 

Notes:  
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Table 2: Bunching of Standard Deviation Shocks over Time 
  2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
Year month insurers Banks insurers banks insurers banks 
Year month pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. 
2006 Feb 15 10 27 1 4 5 4 1 2 3 1 0 
 Mar 14 11 11 11 3 5 3 2 1 1 2 0 
 Apr 30 20 29 14 9 5 16 4 3 4 8 1 
 May 12 19 20 23 3 5 4 6 2 2 2 1 
 June 20 16 22 16 4 3 4 6 0 0 2 1 
 July 23 14 27 4 5 4 10 0 1 4 4 0 
 Aug 12 8 14 3 6 2 1 1 2 2 1 1 
 Sept 22 8 19 9 5 1 3 1 0 0 1 0 
 Oct 32 17 23 15 8 8 10 3 4 4 1 1 
 Nov 9 8 25 20 2 0 1 3 2 0 0 0 
 Dec 23 2 20 5 7 0 5 0 3 0 3 0 
2007 Jan 23 23 21 21 6 6 5 5 2 1 2 1 
 Feb 18 26 13 35 6 11 2 25 2 6 1 20 
 Mar 7 22 18 25 0 4 0 2 0 0 0 0 
 Apr 33 3 17 4 15 2 2 2 7 0 0 2 
 May 15 8 21 9 8 5 7 2 3 2 2 0 
 June 14 24 16 25 5 7 3 1 5 0 1 1 
 July 23 51 26 42 7 20 9 10 3 6 1 2 
 Aug 31 28 32 28 9 11 11 6 2 2 2 0 
 Sept 18 1 24 0 6 0 11 0 0 0 1 0 
 Oct 30 20 31 24 8 5 3 4 5 0 1 1 
 Nov 16 29 25 42 4 4 1 12 1 0 0 3 
 Dec 5 10 3 10 0 1 0 0 0 1 0 0 
2008 Jan 23 42 28 34 4 12 14 7 0 3 3 4 
 Feb 8 9 5 4 1 3 0 0 0 2 0 0 
 Mar 29 26 44 29 7 6 22 5 2 5 9 0 
 Apr 21 5 14 1 6 2 0 0 0 1 0 0 
 May 18 10 8 9 3 1 4 2 0 0 0 1 
 June 4 40 10 51 2 10 0 7 0 3 0 2 
 July 45 31 51 28 10 9 21 7 2 4 11 2 
 Aug 7 3 8 0 1 0 1 0 0 0 0 0 
 Sept 48 62 45 46 20 17 18 18 12 7 4 7 
 Oct 29 40 17 15 12 14 7 1 5 9 1 0 
 Nov 23 14 12 19 5 5 6 5 2 0 3 0 
 Dec 5 5 1 13 2 0 0 0 1 0 0 0 
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Table 2 continued: Bunching of Standard Deviation Shocks over Time 
  2 standard deviation 

shocks 
3 standard deviation 

shocks 
4 standard deviation 

shocks 
Year month insurers Banks insurers banks insurers Banks 
Year month pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. 
2009 Jan 22 42 19 46 1 11 6 21 0 0 2 11 
 Feb 13 10 15 10 4 4 1 1 3 3 1 0 
 Mar 24 16 32 10 6 0 8 2 1 1 1 1 
 Apr 8 3 16 4 0 1 6 0 0 0 0 0 
 May 12 6 20 2 4 1 4 0 0 0 2 0 
 June 6 13 3 9 1 3 2 0 1 1 0 0 
 July 31 19 30 12 9 5 4 2 2 2 0 1 
 Aug 11 4 15 10 4 3 4 1 1 1 1 0 
 Sept 29 11 14 13 7 1 4 0 2 2 1 0 
 Oct 19 12 21 22 5 1 3 6 2 2 1 0 
 Nov 4 9 8 9 1 1 1 2 0 0 0 0 
 Dec 11 8 7 10 1 2 1 3 1 1 0 0 
2010 Jan 27 24 26 32 7 5 8 8 3 3 2 0 
 Feb 6 18 4 15 2 5 0 3 0 0 0 2 
 Mar 20 7 13 8 2 1 4 2 0 1 2 0 
 Apr 30 44 42 29 12 17 11 8 3 5 2 1 
 May 35 31 24 32 13 8 8 4 2 1 3 0 
 June 3 12 3 16 0 2 1 2 0 0 0 0 
 July 20 15 15 11 2 1 8 1 0 1 2 1 
 Aug 16 25 12 19 1 3 5 1 1 2 1 1 
 Sept 26 0 30 4 0 0 3 1 0 0 1 0 
 Oct 8 15 20 15 0 4 2 3 0 2 0 1 
 Nov 24 12 30 18 9 4 8 1 2 1 2 0 
 Dec 11 3 23 6 1 0 3 2 0 0 0 2 
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Table 2a. Regression Shocks by Month and Year, Based on Table 2 Shock Data 
 2 Std. Dev. Shocks 2 Std. Dev. Shocks 3 Std. Dev. Shocks 
 Insurers Banks insurers banks Insurers Banks 
 Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg 
Inter 
Jan 
Feb 
Mar 
Apr 
May 
June 
July 
Aug 
Sept 
Oct 
Nov 
2006 
2007 
2008 
2009 

10.74* 
12.90* 
 1.00 
 7.80 

13.40* 
 7.40 
-1.60 

17.40* 
 4.40 

17.60* 
12.60* 
 4.20 
 0.87 
 0.58 
 2.83 
-3.00 

5.24 
26.11* 
 9.00 
10.80 
 9.40 
 9.20 

15.40* 
20.40* 
 8.00 
10.80 
15.20* 
 8.80 
-3.78 
 3.25 
 6.75 
-4.41 

11.05* 
13.20* 
 2.00 

12.80* 
12.80* 
 7.80 
0.00 

19.00* 
 5.40 

15.60* 
11.60* 
 9.20 
 1.75 
 0.41 
 0.08 
-3.50 

8.81 
23.27* 
 4.20 
 7.80 
 1.60 
 6.20 

14.60* 
10.60 
 3.20 
 5.60 
 9.40 

12.80* 
-4.71 
 5.00 
 3.66 
-4.00 

1.29 
2.31 
1.20 
1.40 

6.20* 
4.00 
0.20 

4.40* 
2.00 

5.40* 
4.40* 
2.00 
0.96 
2.08 
2.00 
0.50 

0.04 
7.66* 
5.00* 
 2.60 
4.80* 
 3.40 
 4.40 
7.20* 
 3.20 
 3.20 
 5.80 
 2.20 
-0.39 
 2.16 
 2.41 
-1.41 

1.51 
6.56* 
-0.40 
5.60* 
5.20* 
 3.60 
 0.20 
8.60* 
 2.60 
6.00* 
 3.20 
 1.60 
 0.73 
-0.58 
 2.66 
-1.41 

0.14 
9.04* 
5.00 
1.60 
1.80 
1.80 
2.20 
3.00 
0.80 
3.00 
2.40 
3.60 
0.01 
2.75 
1.33 
0.16 

0.25 
 0.28 
 0.40 
-0.20 
 1.60 
 0.40 
 0.20 
 0.60 
 0.20 
 1.80 
 2.20 
 0.40 
 0.86 
1.58* 
 1.08 
 0.16 

-0.10 
 1.64 
2.40* 
 1.00 
 1.60 
 0.80 
 0.40 
2.80* 
 1.00 
 1.00 
2.60* 
0.00 
 0.68 
 0.33 
1.66* 
-0.16 

0.27 
1.84 
0.00 

2.20* 
1.40 
1.20 
0.00 

3.00* 
0.40 
1.00 
0.20 
0.40 
1.10 
0.33 
1.33 
0.50 

-0.18 
 3.45 
4.00* 
-0.20 
 0.40 
0.00 
 0.40 
 0.80 
0.00 
 1.00 
 0.20 
 0.20 
 0.02 
 1.83 
 0.66 
 0.41 

R-sq .4343 .3269 .3350 .3316 .2980 .3093 .3706 .2367 .2097 .3100 .3229 .2364 
Notes: *=significant at the 10 percent level or better.  This Table reports coefficients from the 
regression of shocks of on month (December is baseline) and Year (2010 is the baseline) dummy 
variables. 
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Table 3. Stock Market Shifts from Firm Shocks: No Day Fixed Effects vs Day Fixed Effects (Clustered 
SEs) 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  

-0.0010** 
 0.0005+ 
 0.0001 

 0.0008+ 
 0.0007+ 
-0.0000 
 0.0006 
 0.0001 
-0.0007 
 0.0001 

-0.0011** 
-0.0000 
 0.0010+ 
 0.0003 

-0.0009* 
-0.0005 
-0.0004 
 0.0007 
-0.0002 
-0.0010* 
-0.0008+ 

 0.0016*** 
-0.0007* 
 0.0004 

 0.0009+ 
-0.0004 
-0.0004 
-0.0001 
-0.0002 
 0.0006+ 
-0.0001 

-0.0010** 
 0.0007+ 
 0.0004 
 0.0003 
 0.0001 
-0.0001 
 0.0003 
-0.0005 

 0.0002** 
 0.0012 

-0.0014** 
 0.0003 
 0.0004 

-0.0001 
 0.0001 

 0.0006+ 
-0.0004 
 0.0004 

-0.0006* 
 0.0004 

-0.0005+ 
-0.0005 
 0.0006 

-0.0016*** 
-0.0000 
 0.0007 
 0.0003 
 0.0004 
-0.0004 
-0.0003 
-0.0003 
-0.0001 
 0.0003 

-0.0011** 
 0.0007 

-0.0008** 
 0.0007+ 
-0.0004 
-0.0004 
 0.0007 
 0.0003 
-0.0004 
-0.0007 
-0.0020 

-0.0011* 
 0.0006 
 0.0005 
 0.0004 
 0.0000 
-0.0001 
-0.0001 
-0.0002 
-0.0000 
 0.0010+ 
-0.0012* 
-0.0001 
 0.0006 

-0.0007+ 
 0.0007+ 
 0.0010+ 
 0.0001 
 0.0002 
-0.0004 
 0.0001 
 0.0000 
 0.0001 
-0.0002 

-0.0013** 
0.0002 
-0.0006 
-0.0001 

-0.0019*** 
-0.0004 
 0.0007+ 
 0.0011+ 
-0.0004 

-0.0015* 
-0.0008 
 0.0015* 
-0.0008* 
 0.0009 
 0.0002 
-0.0001 
-0.0011 
 0.0003 
 0.0009 

 0.0025** 
 0.0000 
-0.0008 
-0.0009 
 0.0004 
-0.0003 
 0.0006 
 0.0005 
-0.0001 
-0.0003 
-0.0002 
 0.0026* 

-0.0016** 
 0.0006 
 0.0007 

-0.0000 
-0.0003 
 0.0008* 
-0.0005 
 0.0004 

-0.0006* 
-0.0001 
-0.0003 
 0.0000 
 0.0000 

-0.0020*** 
 0.0004 
-0.0008 
 0.0006 
-0.0001 
-0.0005 
-0.0000 
-0.0002 
-0.0002 
 0.0004 

-0.0010* 
 0.0002 
-0.0005 
 0.0016* 
-0.0008 
 0.0003 
-0.0001 

 0.0008** 
0.0011 
-0.0001 

-0.0037** 
-0.0015+ 
 0.0008 
 0.0007 
 0.0004 
 0.0007 
 0.0009 
 0.0002 
-0.0009 
-0.0004 

 0.0033** 
-0.0015+ 
 0.0008 

 0.0010+ 

-0.0013* 
 0.0001 
 0.0004 
 0.0011 

 0.0008** 
 0.0005 

 0.0015*** 
 0.0006 
 0.0009 
-0.0003 
-0.0005 

-0.0010+ 
 0.0011 

-0.0015* 
-0.0010* 
 0.0000 
 0.0005 

 0.0010* 
-0.0006** 
-0.0007 

-0.0017*** 
 0.0010 

-0.0005+ 
 0.0013 
-0.0008 
 0.0007 
-0.0009 
 0.0001 
 0.0001 
-0.0015 

 0.0009** 
-0.0005 
 0.0026* 
 0.0008 

-0.0009+ 
-0.0006+ 
-0.0002 
 0.0009 
 0.0005 
 0.0004 

 0.0013+ 
-0.0016** 

 0.0001 
-0.0003 

-0.0017** 
-0.0001 
-0.0002 
 0.0003 
 0.0010 
-0.0002 

 0.0011** 
-0.0012 
 0.0005 
-0.0003 
-0.0005 
-0.0001 
-0.0003 
-0.0008 
 0.0003 
-0.0003 
 0.0001 
-0.0004 
 0.0003 
 0.0036 

-0.0011** 
 0.0010 
 0.0001 

 0.0025+ 
-0.0005 
 0.0003 
 0.0021 
 0.0006 
0.0024 
-0.0034 

-0.0031+ 
 0.0005 
 0.0005 
 0.0013 

 0.0018*** 
 0.0001 
 0.0011 
 0.0004 
-0.0006 
-0.0005 
 0.0007 

-0.0002+ 
 0.0026 
 0.0009 
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TD   
UBS  
USB  
WFC  

-0.0001 
-0.0005 
 0.0002 
 0.0003 

 0.0009 
-0.0006 
-0.0004 
 0.0001 

 0.0006 
-0.0002 
-0.0002 
 0.0006 

-0.0004 
-0.0007 

-0.0013+ 
 0.0003 

 0.0003 
-0.0004 
-0.0009 
 0.0012+ 

-0.0010** 
-0.0010 

-0.0014+ 
-0.0009+ 

F-joint 
statistic 

1.52 
(.0134) 

1.86 
(.0004) 

1.76 
(.0012) 

1.66 
(.0041) 

2.81 
(<.0001) 

3.50 
(<.0001) 

Notes: ***=significant at 1% level, **=significant at 5% level, *=significant at 10% level, +=significant 
at 20% level.  All specifications included firm specific intercepts and firm specific market returns (firm 
FE*market returns, yielding the firm’s beta in a CAPM model), and firm specific market shocks on other 
firms (whose coefficients are included in the next table).  All specifications were estimated with clustered 
standard errors at the day level. 
 

Table 3a. Network Shifts: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 0.0069 0.0052 0.0066 0.0044 0.0108 0.0108 
Ins: ∑ neg coeff -0.0073 -0.0067 -0.0091 -0.0071 -0.0091 -0.0072 
Ins: ∑|coeff| 0.0142 0.0119 0.0157 0.0115 0.0199 0.018 
Bank: ∑pos coeff 0.005 0.0051 0.0105 0.0113 0.0099 0.0153 
Bank: ∑neg coeff -0.0048 -0.0077 -0.0058 -0.0114 -0.0086 -0.0126 
Bank: ∑|coeff| 0.0098 0.0128 0.0163 0.0227 0.0185 0.0279 

Notes: Cell entries are the respective sums from Table 3. 
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Table 4. Stock Market Process-dynamics from Firm Shocks: No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
Lag1 
Lag2 
Lag3 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  

-0.0213 
  0.0021 

 -0.0316* 
  0.257 
  0.874 
  0.280 
  1.614* 
  0.400 
  0.938* 
 -0.175 
 -0.431 
  0.552 

  0.942+ 
 -0.018 

 -3.345*** 
  0.690 

 -1.223+ 
  0.585 
 -0.275 
0.805+ 
 0.168 
-0.857 
-0.382 
-0.550 
-0.639 
-0.807 
 1.542 
-0.974 

-1.134*** 
-2.077*** 
 1.366** 
 2.506** 

 0.400 
-0.514 

 1.399** 
-2.603*** 
 1.073** 
-0.060 
-0.255 

-1.264** 
-0.258 
-0.107 
-0.130 

-0.954+ 
-0.014 
-1.067 
-0.428 

-0.0389** 
-0.0137 

-0.0333** 
 0.362 
-0.150 
 0.115 

 1.740** 
 0.454 
 0.339 
 0.451 
-0.104 
 0.103 
 0.566* 
 0.273 

-2.407** 
 0.670 

-0.706* 
 0.328 
-0.087 
 0.536* 
 0.108 
 0.726 

-0.853+ 
-1.174** 

-0.289 
-0.494* 
 0.267 

-0.916+ 
-0.466+ 
-0.801** 
 0.700** 
 1.065** 
 0.278 
 0.430 
 0.760* 

-2.025*** 
0.670** 
-0.649 
 0.144 

-0.743** 
-0.049 
-0.129 
-0.670 
-0.702 
 0.131 

-1.183+ 
-0.457*** 

-0.0206 
 -0.0033 
 -0.0317* 

  0.634 
  2.711** 
 -0.365+ 
  1.860* 
  0.521 
 -0.285 
  0.753 
 -0.015 
  2.394+ 
  0.920 
  0.574 

 -3.915*** 
  1.573 
 -1.088 
  0.354 
  0.301 
-1.643 
 0.568 
-0.237 
-0.893 
 0.871 

-2.068*** 
-1.357+ 
 1.707+ 
-0.977 

-1.189*** 
-2.710*** 
 1.511** 
 1.240 
 0.356 
 0.146 

 2.184*** 
 3.295*** 

 0.212 
-0.125 
-0.418 

-1.634*** 
-0.066 
 0.425 
 0.134 

-1.010+ 
-0.185 
-1.204 
-0.647* 

-0.0348* 
-0.0162 

-0.0323** 
 0.846+ 
 0.093 
 0.264* 
 1.966** 
-0.005 
-0.023 
 0.048 
 0.775 
 0.447 

 0.485+ 
 0.342 

-2.409** 
 1.376+ 
-0.666 

 0.389** 
-0.588 
-0.216 
 0.292 
 0.888 

-1.123+ 
 0.568 

-0.894* 
-0.908* 
 0.620 

-1.041+ 
-0.925* 
-1.178 

 0.876*** 
-0.088 
 0.639 
 0.445 

 1.128*** 
 0.952+ 
0.048 

-0.756* 
-0.136 

-0.855*** 
 0.349* 
 0.078 
-0.501 

-1.090* 
-0.141 

-1.247+ 
-0.408* 

-0.0095 
 0.0001 
-0.0201 
-0.397 
 1.577 

-0.688** 
 2.098* 
 0.474 

 1.545*** 
 0.681 
-1.249 
 1.346 

-0.882+ 
 2.125+ 
-5.125** 
 4.521*** 
-3.849** 

 0.049 
-0.357 
-0.216 
 0.704 
-1.241 
-1.088 
-0.719 

-2.371*** 
-0.937* 
 1.484 
-0.494 
 1.371+ 

-4.630*** 
 1.337+ 

10.051*** 
-3.397*** 

 0.791 
 5.113*** 

 2.903 
 0.326 
-0.108 
-0.245 

-5.136*** 
 1.249** 
 0.607* 
 0.892 
-0.737 
-0.207 
-1.203 

-1.738*** 

-0.0188 
-0.0116 

-0.0248* 
-1.432 
 0.851 
-0.052 
 2.398* 
-0.340 
 0.460 
 0.768 
 0.891 
-0.294 
 0.836+ 
 1.660* 
-3.382* 
 3.685** 
-2.735** 
-1.459** 

-0.928 
 0.051 
 0.426 
 0.534 

-1.610+ 
 0.012 

-1.118+ 
-0.902*** 

 0.606 
-1.129** 
 1.544** 
-2.494 
 0.926 

 3.729*** 
 0.331 
 0.893 

 3.685*** 
 0.344 
0.079 
-0.160 
-0.266 

-4.033*** 
 0.966** 

 0.679*** 
 0.142 

-1.380+ 
-0.342 
-1.471 

-1.282*** 
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TD   
UBS  
USB  
WFC  

-0.655 
-0.631 
 0.002 
 1.438* 

 0.021 
 0.316 
 0.121 
 1.047* 

-0.870 
-1.939*** 

-0.479 
 1.489* 

-0.513 
-0.303 
-0.414 
 1.021+ 

 2.328 
 0.757 
-1.535 
 1.692+ 

 0.228 
 0.498 
-1.600 
 1.395+ 

F-joint 
statistic 

5.43 
(<.0001) 

11.07 
(<.0001) 

18.20 
(<.0001) 

15.68 
(<.0001) 

51.69 
(<.0001) 

37.83 
(<.0001) 

Notes: 61,069 observations. ***=significant at 1% level, **=significant at 5% level, *=significant at 10% 
level, +=significant at 20% level.  Joint F-tests on all the coefficients in each column indicated 
significance at the <.0001 level, for all specifications. All specifications included firm specific intercepts 
and firm specific market returns (“firm FE*market returns”, yielding the firm’s beta from a CAPM 
perspective), and firm specific market shocks on other firms (whose coefficients are included in the next 
table).  All specifications were estimated with clustered standard errors at the day level. We estimated our 
model using 5 alternative ways of measuring market returns---none of them made any difference for the 
results, so we present the results with only the VWRETD variable (VWRETD is the Value weighted 
return with dividends for all CRSP stocks). 
 

 

Table 4a. Process-dynamics: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 9.647 7.038 15.741 9.399 16.604 13.178 
Ins: ∑ neg coeff -8.702 -6.264 -11.866 -6.832 -19.119 -14.252 
Ins: ∑|coeff| 18.349 13.302 27.607 16.231 35.723 27.43 
Bank: ∑pos coeff 8.184 5.683 10.992 5.536 29.417 15.439 
Bank: ∑neg coeff -13.125 -8.79 -13.453 -9.596 -19.43 -14.157 
Bank: ∑|coeff| 21.309 14.473 24.445 15.132 48.847 29.596 

Notes: Cell entries are the respective sums from Table 4. 
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Table 5. Firm Characteristics and Network Stability Shifts: Main Effects and Process Dynamic Shifts  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day 

FE 
Day FE No Day 

FE 
Day FE No Day 

FE 
Day FE 

Value 
Volume 
Analysts 
Value*Process 
Dynamics 
Volume*Process 
Dynamics 
Analysts*Process 
Dynamics 

0.0369** 
 0.0176** 
-0.0001 

-0.9485+ 
 0.0317 
 0.0049 

0.0472*** 
 0.0145* 
-0.0000 

-0.4030+ 
 0.0338 
 0.0001 

0.0392** 
 0.0171** 
-0.0001 

-2.7870** 
-0.3603 

 0.0165** 

0.0465*** 
 0.0139* 
-0.0000 

-1.3074*** 
-0.1585 
 0.0061 

0.0423*** 
 0.0175** 
-0.0001 
-3.0247 
-1.3001* 
 0.0374+ 

0.0491*** 
 0.0141* 
-0.0000 
-1.3099* 

-
0.7047*** 

 
0.0194*** 

Notes: Firm Value (Value) and Daily Volume of Trades (Volume) are measured in billions.  
Number of analysts (Analysts) following the firm are measured as integers.  All models also 
include all previous independent variables: the autoregressive process with three lags, firm fixed 
effects, separately betas from market returns, standard deviation network shifts, standard 
deviation process dynamic shifts, as well as the interactions listed above (and in half the models, 
fixed effects for each day). As the network process dynamic response variable for firm i given a 
shock in firm k at time t is 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽

𝑗𝑗=1 , (the corresponding coefficients for these 
process dynamic variables are given in Table 4), we measure the response variable for the 
interaction of the variable (𝑋𝑋𝑖𝑖,𝑡𝑡) with the network process dynamics as 
𝑋𝑋𝑖𝑖,𝑡𝑡[∑ 𝑆𝑆𝐷𝐷𝑘𝑘,𝑡𝑡−1(∑ 𝜃𝜃𝑗𝑗𝑟𝑟𝑖𝑖,𝑡𝑡−𝑗𝑗)𝐽𝐽

𝑗𝑗=1 ]𝑘𝑘 . That is, we assume the value, volume, and analysts effects act 
uniformly on all process dynamic shifts (though the process dynamic shifts are estimated 
separately, as indicated in Table 4).  Means (standard deviations) are as follows: value, .0291 
(.0393); volume, .0134 (.0674); analysts, 13.272 (7.7754). 
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Appendix A: Standard Deviation Jumps in 2011-2016 

Table A2: Bunching of Standard Deviation Shocks over Time 
  2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
Year month Insurers Banks insurers banks insurers banks 
Year month pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. 
2011 Feb 19  14 16 16  0  3  2  3 4  1 1  1 
 Mar 13  13 18 11  6  1  5  0 0  0 1  0 
 Apr 28   9 15 16  1  2  2  3 7  0 1  0 
 May  6  15  9 22  9  3  1  3 0  1 0  1 
 June 19  30  5 34  0  7  1 16 1  1 0  7 
 July  9  21 15 17  1  5  1  3 0  3 1  0 
 Aug 34  73 22 75  2 34  8 40 6 22 2 15 
 Sept  6  11  6 16 16  0  0  2 1  0 0  0 
 Oct 16   6 23  7  1  1  2  0 0  0 0  0 
 Nov  8   9  2 12  0  0  0  1 0  0 0  0 
 Dec 21   3 21  2  0  0  4  0 0  0 0  0 
2012 Jan 11  16 15 11  4  5  0  3 1  2 0  0 
 Feb 25   6 11  5  1  3  3  0 1  1 0  0 
 Mar 33  14 30 14  5  6  9  5 1  2 0  0 
 Apr 14  17  9 19  6  3  2  2 3  3 1  0 
 May  7  24  2 28  6  4  0  0 0  3 0  0 
 June 22  21 13 25  2  5  3  8 1  1 0  5 
 July 11  13 23  8  4  4  1  2 1  0 0  0 
 Aug 14   6 14  4  5  3  3  1 2  2 1  0 
 Sept 47  10 52  4  5  1 21  0 5  0 7  0 
 Oct 26   6 19 18 19  0  6  4 5  0 3  1 
 Nov 12  25 16 18  6  9  3  4 1  2 3  1 
 Dec 17   7 20  2  2  1  7  0 2  0 1  0 
2013 Jan 32   6 34  7  5  2 16  0 5  1 4  0 
 Feb 22  37 16 34 11 10  3 12 2  2 0  4 
 Mar 13   1 14  6  6  0  3  0 0  0 0  0 
 Apr 35  34 27 35  1 11  4 12 3  4 0  1 
 May 13   5 13  3 10  2  4  0 0  0 0  0 
 June 16  25 15 32  5  1  0  8 0  1 0  1 
 July 14   9 19  7  0  3  4  2 3  0 0  0 
 Aug 15  22 18 26  4  3  4 12 3  0 0  4 
 Sept 18  13 14  6  6  3  5  2 1  0 1  0 
 Oct 34  11 30 13  3  3 10  1 2  0 1  1 
 Nov 24   5 16  9  8  0  9  1 2  0 4  0 
 Dec 17  11 22  8  5  1  6  1 0  0 0  1 
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Table A2 continued: Bunching of Standard Deviation Shocks over Time 
  2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
Year month Insurers Banks insurers banks insurers Banks 
Year month pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. 
2014 Jan 15 57 22 41  1 15  7 11 0  2 4 4 
 Feb  9 18  7 10  5  5  2  0 4  2 0 0 
 Mar 11  9 22  7  1  3  4  1 0  1 0 0 
 Apr 22 32 13 21  3  7  1  7 1  1 1 1 
 May  8  4 16  8  4  1  8  1 1  0 5 0 
 June 18  9 24  8  2  0  4  1 1  0 0 0 
 July 19 34 18 23  3 13  3 10 0  7 1 4 
 Aug  9 18 10 19  2  3  3  4 2  1 1 0 
 Sept 28 28 16 27  4  6  3 10 1  0 0 2 
 Oct 31 27 21 45  1  3  1 14 0  0 1 3 
 Nov  3  4  8  4  0  3  2  2 0  2 0 1 
 Dec 44 46 36 43 12 10  9 12 3  5 2 6 
2015 Jan 29  8 19 40  2  2  4  5 1  0 2 2 
 Feb 12  6 13 10  2  3  1  5 1  1 0 4 
 Mar 23 20 15 22  1  8  6  4 0  2 0  0 
 Apr  9 18 18  6  4  6  5  1 2  2 3  0 
 May 11 11 16 15  0  2  2  2 0  2 0  0 
 June 36 22 14 26 10  9  0 13 3  1 0  5 
 July 17  8 12 16  6  4  3  4 4  0 0  1 
 Aug 27 56 30 60  5 28  6 24 2 14 1 14 
 Sept  1 11  1 14  0  3  0  0 0  0 0  0 
 Oct 19  7 25  2  5  3  2  0 0  1 1  0 
 Nov  9 11  6  8  2  2  0  1 0  0 0  0 
 Dec 22 26 23 28  5  3  2  9 1  1 0  1 
2016 Jan 10 28 11 44  2  4  3  9 0  0 0  1 
 Feb 26 17 19 18  5  8  0  1 0  3 0  0 
 Mar  9  1 15  0  2  0  2  0 0  0 0  0 
 Apr  9 23 25 12  0 12 11  3 0  6 2  1 
 May 17  9 21  9  8  2  7  2 2  0 0  0 
 June 26 41 17 42  7 20  2 25 2 16 0 19 
 July 10  3  2  0  3  1  1  0 1  1 1  0 
 Aug 25 10 29  6  3  6 10  2 1  2 3  0 
 Sept 21 22 22 41  3 14  3 11 1  5 0  0 
 Oct 20 19 19  8  8  6  3  2 2  3 1  0 
 Nov 43  4 48 13 14  1 22  2 9  0 12  0 
 Dec 14  7  8  4  1  1  4  1 1  0 2  0 
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Table A3. Stock Market Shifts from Firm Shocks: No Day Fixed Effects vs Day Fixed Effects ; 2011-
2016, Clustered SEs 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC 
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  
TD   
UBS  

-0.0004* 
 0.0001 
-0.0001 
 0.0001 
 0.0002 
-0.0001 
-0.0002 

-0.0002+ 
-0.0002 
-0.0002 
 0.0000 
-0.0001 
 0.0000 
-0.0001 
 0.0002 
 0.0000 
-0.0001 

-0.0004*** 
-0.0001 
 0.0002 

 0.0003+ 
-0.0000 
-0.0001 
-0.0002 
 0.0003+ 
 0.0000 

 0.0004+ 
-0.0001 
-0.0001 
-0.0000 
 0.0000 

-0.0003+ 
-0.0001 
 0.0001 
-0.0001 
 0.0000 
 0.0001 

 0.0003+ 
-0.0000 
-0.0004* 
0.0003+ 
-0.0000 

-0.0006*** 
 0.0005** 
-0.0006 
-0.0000 

-0.0003+ 
 -0.0001 
 -0.0002 
  0.0001 
  0.0001 
 -0.0002 
 -0.0000 

 -0.0002+ 
 -0.0001 

 -0.0003** 
  0.0002+ 
  0.0001 
 -0.0001 
  0.0002 
 -0.0003 
 -0.0001 
 -0.0000 
  0.0001 
 -0.0001 
  0.0002 

  0.0004** 
 -0.0002+ 
 -0.0002 

 -0.0005** 
  0.0002 

 -0.0005+ 
  0.0005** 
 -0.0001 

 -0.0005+ 
 -0.0010** 
  0.0011+ 
 -0.0001 
  0.0001 
 -0.0003 
0.0002 
 0.0000 
-0.0001 
 0.0002 
 0.0001 
-0.0002 
 0.0004 

-0.0004+ 
-0.0001 

 0.0008*** 
 0.0002 
 0.0001 

-0.0002 
 0.0003+ 

-0.0006** 
 0.0002 
 0.0001 
-0.0001 

-0.0003** 
-0.0006*** 

-0.0001 
-0.0003 
 0.0002 
-0.0000 
 0.0004+ 
-0.0002 
-0.0000 
 0.0001 
-0.0001 

-0.0005** 
-0.0002 
-0.0002 
 0.0001 
-0.0002 
-0.0000 
-0.0002 
 0.0006* 
 0.0004* 
 0.0004 
-0.0001 
 0.0001 
 0.0002 
 0.0001 
 0.0000 

-0.0010*** 
 0.0003+ 

-0.0004** 
 0.0001 
-0.0001 
 0.0002 
 0.0000 
-0.0004 
-0.0003 
 -0.0000 
 -0.0004 

  0.0008*** 
 -0.0005** 

  0.0000 

0.0000 
 0.0001 

-0.0004+ 
 0.0001 
 0.0001 

-0.0005* 
-0.0003 

-0.0004* 
 0.0000 

-0.0003* 
 0.0002 

 0.0002+ 
-0.0003 
-0.0002 

-0.0010*** 
-0.0002 
-0.0000 

 0.0006** 
 0.0000 
 0.0002 
 0.0002 

-0.0003+ 
-0.0002 
-0.0002 
 0.0003 
-0.0004 
 0.0004 
-0.0002 
 0.0004+ 
 0.0001 
 0.0014 
 0.0005 
-0.0000 
-0.0004 
0.0006+ 
 0.0004 

-0.0005* 
 0.0003 
 0.0001 

-0.0007** 
-0.0003 
-0.0003 
 0.0001 

 0.0009** 
-0.0003 
-0.0001 

0.0002 
 0.0003*** 
-0.0004* 
-0.0001 
-0.0002 

 0.0005** 
-0.0002* 

-0.0009*** 
-0.0002 
-0.0002 
-0.0001 
 0.0001 
 0.0000 

-0.0008** 
-0.0002 
-0.0000 
-0.0003 

-0.0006** 
-0.0003 
 0.0001 
 0.0001 

-0.0001+ 
-0.0007 
-0.0004 
-0.0003 
 0.0001 
-0.0002 
 0.0005+ 
 0.0003 
 0.0002 
-0.0002 
 0.0000 

-0.0011*** 
 0.0002 

-0.0007** 
 0.0005*** 

-0.0001 
 0.0006* 
-0.0002 
-0.0008 
-0.0003* 
 0.0005+ 
 0.0008 

 0.0011*** 
-0.0006* 
-0.0002 

0.0004 
 0.0000 
-0.0003 
-0.0001 
-0.0001 
 0.0000 
 0.0001 

-0.0006+ 
-0.0002 

-0.0003* 
 0.0000 

 0.0002+ 
-0.0003 
-0.0004 

-0.0013*** 
-0.0000 
-0.0003 
 0.0002 
 0.0001 
 0.0002 
 0.0001 

-0.0005+ 
-0.0010** 

-0.0004 
 0.0004 
-0.0010 
 0.0003 

 0.0006+ 
 0.0005*** 

 0.0004 
 0.0011 
 0.0004 

-0.0009* 
 0.0001 
 0.0002 

 0.0011** 
-0.0009** 
 0.0006+ 
-0.0005 
-0.0004 
-0.0001 
-0.0004 
0.0001 

 0.0010* 
-0.0003 
-0.0003 
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USB  
WFC  

 0.0004+ 
 0.0002 

 0.0001 
-0.0001 

  0.0001 
  0.0006** 

 0.0003 
 0.0001 

 0.0011+ 
 0.0002 

 0.0008 
-0.0002 

F-joint 
statistic 

1.38 
(.0438) 

1.45 
(.0249) 

7.66 
(.0003) 

1.47 
(.0204) 

4.12 
(<.0001) 

2.010 
(.0001) 

Notes: ***=significant at 1% level, **=significant at 5% level, *=significant at 10% level, +=significant 
at 20% level. All specifications included firm specific intercepts and firm specific market returns (firm 
FE*market returns, yielding the firm’s beta in a CAPM model), and firm specific market shocks on other 
firms (whose coefficients are included in the next table).  All specifications clustered the standard errors 
at the day level.  Estimates of the model from 2011-2016 daily returns, N=73,630 observations). 
 

Table A3a. Network Shifts: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects; 2011-
2016 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 0.0011 0.0014 0.0014 0.0017 0.0013 0.0013 
Ins: ∑ neg coeff -0.0025 -0.0029 -0.0038 -0.0043 -0.0057 -0.0058 
Ins: ∑|coeff| 0.0036 0.0043 0.0052 0.006 0.007 0.0071 
Bank: ∑pos coeff 0.0026 0.004 0.0039 0.0059 0.0061 0.0076 
Bank: ∑neg coeff -0.0023 -0.0034 -0.0032 -0.0032 -0.0047 -0.005 
Bank: ∑|coeff| 0.0049 0.0074 0.0071 0.0091 0.0108 0.0126 

Notes: Cell entries are the respective sums from Table A3.   
 
  



45 
 

Table A4. Stock Market Process-dynamics: No Day Fixed Effects vs Day Fixed Effects ; 2011-2016 
Using Clustered SEs 

 
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
Lag1 
Lag2 
Lag3 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  

-0.0105 
 0.0055 
-0.0093 
 0.784 
 0.163 
 1.048* 
 2.064+ 
-0.057 
-0.356 
-0.040 
-0.032 
 1.288+ 
-0.036 
 0.734 
-0.975 

-2.587*** 
-1.861*** 

-0.091 
-0.351 

-1.090* 
 0.647 
 2.006 
-0.954 
 0.382 
-0.574 
 0.504 
 1.681 
-0.640 
-0.878 
 0.411 
 0.146 
-0.374 
 0.962 

-2.366+ 
 0.716 
0.594 

 1.075* 
-1.099* 
-1.134 
-0.011 
 0.199 
-0.592 
 0.813 

-2.037+ 
-1.778 

0.0085 
-0.0002 

-0.0136* 
-0.534 
 0.750+ 
-0.890 
-0.484 
 0.818+ 
 0.332 
-0.204 
 0.679 
 0.056 
 0.247 
 0.631 
 0.552 
-1.157 
-0.241 
 0.608 

-1.117+ 
 1.353* 
-1.139 
-1.830 

 3.870** 
-0.030 
 0.560 
 0.072 
 0.780 
-0.026 
 0.306 
 0.664 
-0.554 
-0.441 
 0.206 
 0.239 
 0.010 
-0.093 

-0.880+ 
 0.569 

 2.210+ 
 0.935 
-0.027 
-0.428 
-0.633 

 3.456** 
-1.863+ 

-0.0127+ 
 0.0042 
-0.0094 
 0.055 

-1.113** 
 0.789 

 2.202* 
-0.845 
 0.164 
-0.252 

-0.423+ 
 1.121 
-0.144 
-0.166 
-0.691 

-2.180*** 
-1.844** 

 0.274 
 0.016 
-0.097 
 0.839 
 2.037 
-0.902 

 1.824*** 
-0.560 
 0.778 
 1.595 
-0.955 
-0.719 
-0.305 
 0.691 

 1.364+ 
-0.940 

-2.221+ 
-0.010 

2.038*** 
 0.275 

-1.081** 
-1.667 
 0.245 
 0.126 
-0.527 
 0.884 

-2.482* 
-1.220 

0.0089 
-0.0007 

-0.0126+ 
-0.908 

 1.080** 
-2.395** 
-0.658 
 0.580 
 0.981 
 0.191 
 0.991 
 0.633 
 0.117 
 0.862* 
 0.391 
-0.885 
 1.242 
 0.008 
-0.579 
 1.942* 
-1.197 

-2.312+ 
 4.182*** 
-0.879+ 
-0.028 
-0.851 
 1.021 
 0.280 
 1.014 

 1.165+ 
-0.068 

-2.022** 
-0.275 
 0.431 
-0.279 
-0.869 
 0.042 
 0.097 

 2.506+ 
 0.874+ 
-0.738 
-0.698 
-0.497 

 3.945** 
-1.756 

-0.0104 
 0.0033 
-0.0102 
 2.361 
-0.692 
 1.883* 
 2.234* 
-0.173 
-0.709 
 0.353 
-0.900 
 1.217 
-0.153 
-0.011 
-1.110 

-2.249** 
-2.582*** 

 0.034 
-0.622 
-0.098 
 0.649 
 1.798 
-0.665 
 1.031 

-1.411** 
 1.725+ 
 1.642 
-0.894 
-0.492 

 2.159** 
 0.998 
-1.276 
-2.103 
-2.192 
 0.425 

2.826*** 
 1.023+ 
 0.294 
-1.636 
 0.106 
 0.358 
-1.558 
 0.949 

-2.072+ 
-1.888 

0.0094 
-0.0006 

-0.0119+ 
-4.995*** 
 1.492** 
-0.806 
-0.805 
-0.085 
 1.638+ 
-0.589 
-0.117 
-0.255 
-0.292 
 0.486 
 0.557 

-2.074+ 
 4.415*** 

-0.467 
-1.175 

 3.150*** 
-1.437+ 
-2.350+ 

 4.259*** 
 0.099 
 1.525 

-3.169* 
 1.130 
 0.480 
-0.158 

-1.953*** 
-0.822 

-2.686* 
-3.096 
 0.223 
-0.348 
-0.514 
-0.737 

-2.154*** 
 2.882* 
 0.272 
-1.345 
 1.598 
-0.596 

 4.308*** 
-1.735 
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STI  
STT  
TD   
UBS  
USB  
WFC  

 2.713** 
-1.136+ 
 1.664** 

 0.579 
-0.878 

 2.870** 

-0.361 
-0.513 
-0.289 
 0.032 

-1.572+ 
-0.800 

 2.074* 
-1.951*** 
 1.989*** 

 0.149 
 0.121 

 2.942*** 

-0.402 
-1.292 
 0.095 
 0.785 
 0.082 
-0.706 

 2.034+ 
-4.228*** 

 1.547 
-1.114 
 0.468 

 3.050*** 

-0.436 
 1.706+ 
 1.382 
 0.664 
 0.471 
-0.902 

F-joint 
statistic 

4.53 
(<.0001) 

1.38 
(.0443) 

2.66 
(<.0001) 

2.61 
(<.0001) 

17.98 
(<.0001) 

8.35 
(<.0001) 

Notes: 73,630 observations. ***=significant at 1% level, **=significant at 5% level, *=significant at 10% 
level, +=significant at 20% level. All specifications included firm specific intercepts and firm specific 
market returns (“firm FE*market returns”, yielding the firm’s beta from a CAPM perspective), and firm 
specific market shocks on other firm. All specifications clustered the standard errors at the day level. 
 

 

Table A4a. Process-dynamics: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects (Day 
FE); 2011-2016 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 11.301 11.308 11.694 14.221 14.927 18.751 
Ins: ∑ neg coeff -9.004 -7.626 -9.217 -10.692 -11.375 -18.616 
Ins: ∑|coeff| 20.305 18.934 20.911 24.913 26.302 37.367 
Bank: ∑pos coeff 12.742 8.627 12.898 11.316 16.237 13.986 
Bank: ∑neg coeff -12.923 -8.48 -14.078 -9.602 -19.453 -17.482 
Bank: ∑|coeff| 25.665 17.107 26.976 20.918 35.69 31.468 

Notes: Cell entries are the respective sums from Table A4.   
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Appendix B:  Garch Results (Day FE Models not estimable for these Garch models) 

Table B3. Stock Market Shifts from Firm Shocks: No Day Fixed Effects vs Day Fixed Effects (Garch) 
 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  

-0.00038* 
-0.00020 
 0.00010 
-0.00007 
 0.00027 
 0.00015 
 0.00030 
0.000095 
-0.00053 

 0.00039*** 
0.000055 
-0.00015 
 0.00043 
0.000029 

-0.00060*** 
-0.00010 
-0.00019 

 0.00043*** 
-0.00011 
-0.00014 

-0.00071*** 
 0.00078*** 
-0.00043** 
 0.00043** 
 0.00032** 
0.000053 
-0.00001 
 0.00012 
-0.00003 

-0.00034*** 
0.000038 
-0.00014 

 0.00059*** 
-0.00009 
-0.00008 
0.000021 
-0.00001 
0.000023 
0.000016 
-0.00019+ 
-0.00027** 
-0.00035** 
 0.00022* 

 0.00027*** 

NC -0.00054* 
 0.00012 
 0.00041 

-0.00037* 
0.00008 
0.00006 

 0.00083* 
 0.00012 
-0.00012 
 0.00032* 
 0.00010 
0.00009 
-0.00069 

-0.00040+ 
-0.00033* 
-0.00005 
-0.00023 
 0.00024 
0.000052 
-0.00030 

-0.00069** 
 0.00058** 
-0.00032+ 
 0.00044** 

 0.00057*** 
0.000073 
-0.00043+ 
 0.00029** 

 0.00064*** 
 0.00047** 
-0.00050** 

 0.00022 
0.00003 

-0.00024* 
 -0.00003 
 -0.00012 

 -0.00023+ 
 -0.00031* 
  0.00026+ 

 -0.00044** 
 0.000088 
 -0.00023+ 
  0.00015 

 -0.00019+ 

NC -0.00021 
-0.00003 
 0.00071+ 
-0.00037+ 
0.00001 

 0.00065+ 
 0.00088 
-0.00014 
-0.00030 
 0.00013 
-0.00009 
-0.00045 
-0.00032 

-0.00081+ 
0.00009 
-0.00030 
0.00035 
 0.00019 
-0.00032 

-0.00246*** 
-0.00120*** 
 0.00107** 
-0.00036+ 
-0.00067+ 
0.00002 
 0.00036 

 0.00112+ 
 0.00023+ 
 0.00028 

 0.00074+ 
 0.00022 
-7.09E-6 

 0.00053+ 
-0.00038* 
-0.00040 
 -2.49E-6 

-0.00107*** 
-0.00026+ 

 0.00077*** 
-0.00030 
 0.00025 
-0.00029 
 0.00043+ 

-0.00061*** 

NC 
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TD   
UBS  
USB  
WFC  

0.000094 
-0.00019* 

-0.00053*** 
0.00012 

  0.00013 
  0.00018 
 -0.00007 
  0.00011 

-0.00045* 
 0.00036 

-0.00061* 
 0.00062** 

F-joint 
statistic 

4.61 
(<.0001) 

 2.42 
(<.0001) 

 2.48 
(<.0001) 

 

Notes: ***=significant at 1% level, **=significant at 5% level, *=significant at 10% level, +=significant 
at 20% level.  Joint F-tests on all the coefficients in each column indicated significance at the <.0001 
level, for all specifications. All specifications included firm specific intercepts and firm specific market 
returns (firm FE*market returns, yielding the firm’s beta in a CAPM model), and firm specific market 
shocks on other firms (whose coefficients are included in the next table).  All specifications were 
estimated as Garch(1,1) processes (on the error terms). 
 

Table B3a. Network Shifts: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 0.003459 NC 0.003442 NC 0.00408 NC 
Ins: ∑ neg coeff -0.00361 NC -0.00404 NC -0.00803 NC 
Ins: ∑|coeff| 0.007069 NC 0.007482 NC 0.01211 NC 
Bank: ∑pos coeff 0.001885 NC 0.003211 NC 0.00593 NC 
Bank: ∑neg coeff -0.00223 NC -0.00279 NC -0.00437958 NC 
Bank: ∑|coeff| 0.004115 NC 0.006001 NC 0.01030958 NC 

Notes: Cell entries are the respective sums from Table B3.  NC: Not converge 
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Table B4. Stock Market Process-dynamics from Firm Shocks: No Day Fixed Effects vs Day Fixed 
Effects (Garch) 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
Lag1 
Lag2 
Lag3 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  

-0.036*** 
-0.011*** 
-0.016*** 
 0.479** 
 0.384** 

 0.078 
 0.741 

 1.002*** 
 0.585*** 

-0.051 
   0.270 

-0.00938 
  -0.148 

  -0.506** 
  -0.951*** 

  -0.181 
   0.119 
  -0.179 
   0.018 

  -0.498*** 
   0.805* 
  -0.460 

  -1.487** 
  -0.846*** 
  -0.589*** 
  -0.267+ 
  -0.294 

  -1.008** 
  -0.227*** 
  -0.252** 
   0.378*** 

   0.156 
   0.429*** 

   0.428 
   0.753*** 
  -0.618*** 
   0.458*** 
  -0.534*** 

  -0.070 
  -0.426*** 
   0.437*** 

  -0.078 
  -1.631*** 

  -0.916 
  -0.302 

  -0.804*** 

NC -0.037*** 
-0.010*** 
-0.016*** 

 0.511* 
 0.878*** 

 0.207 
 0.787 
 0.598 
 0.054 
 0.329 

 0.565+ 
-0.052 
 0.157 

-0.553* 
-0.720*** 

-0.428 
-0.042 

-0.390* 
-0.068 

-1.217*** 
 0.775+ 
-0.357 

-1.429** 
-0.267 

-0.853*** 
-0.161 
-0.297 

-0.876** 
-1.088*** 
-0.609*** 
 0.392** 
 0.087 

-1.093*** 
0.295 

 0.963*** 
-0.046 
 0.105 

-0.180+ 
-0.118 

-0.608*** 
 0.763*** 

 0.166 
-1.592*** 
-1.137+ 
-0.223 

-0.732** 

NC -0.038*** 
-0.011*** 
-0.016*** 

 0.220 
 1.388*** 

-0.110 
 0.659 
 0.232 
-0.030 
 0.233 

 0.796+ 
-0.217 
 0.373* 
 0.214 

-0.798** 
 0.821 

-0.487** 
-1.523** 
-0.810** 

-1.364*** 
 0.740+ 
-0.663 

-1.400** 
-0.309 

-0.874*** 
-0.267 

-0.455* 
-0.959** 
 0.293* 

-0.837** 
-0.067 
 0.443+ 
-1.119** 

0.376 
-0.017 
 0.119 

-0.468*** 
-0.183 
-0.111 

-0.682** 
 1.121*** 

 0.384* 
-1.566*** 

-1.051 
-0.426+ 
-0.738** 

NC 
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STT  
TD   
UBS  
USB  
WFC  

  -0.190** 
  -0.432*** 
   0.172** 
  -0.261** 
   1.308** 

-0.631*** 
-0.062 
 0.105 
-0.125 

1.412*** 

-0.529*** 
-0.724+ 
-0.010 
-0.360 

1.403***3 
F-joint 
statistic 

13.24 
(<.0001) 

 19.39 
(<.0001) 

 11.87 
(<.0001) 

 

Arch1   0.0253***     0.0250***    0.0249***  
Garch1   0.9749***     0.9752***    0.9753***  
       

Notes: 61,069 observations. ***=significant at 1% level, **=significant at 5% level, *=significant at 10% 
level, +=significant at 20% level.  Joint F-tests on all the coefficients in each column indicated 
significance at the <.0001 level, for all specifications. All specifications included firm specific intercepts 
and firm specific market returns (“firm FE*market returns”, yielding the firm’s beta from a CAPM 
perspective), and firm specific market shocks on other firms (whose coefficients are included in the next 
table).  All specifications were estimated as Garch(1,1) processes (on the error terms). We estimated our 
model using 5 alternative ways of measuring market returns---none of them made any difference for the 
results, so we present the results with only the VWRETD variable (VWRETD is the Value weighted 
return with dividends for all CRSP stocks). 
 

 

Table B4a. Process-dynamics: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 4.481 NC 4.861 NC 5.676 NC 
Ins: ∑ neg coeff -6.46638 NC -6.834 NC -9.307 NC 
Ins: ∑|coeff| 10.94738 NC 11.695 NC 14.983 NC 
Bank: ∑pos coeff 4.519 NC 4.288 NC 4.139 NC 
Bank: ∑neg coeff -7.749 NC -9.12 NC -9.847 NC 
Bank: ∑|coeff| 12.268 NC 13.408 NC 13.986 NC 

Notes: Cell entries are the respective sums from Table B4.  NC: Not converge 
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Table B.A3. Stock Market Shifts from Firm Shocks: No Day Fixed Effects vs Day Fixed Effects; 2011-
2016 (Garch) 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC 
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  
TD   
UBS  

-0.00021+ 
0.00005 
0.00001 
-0.00013 
 0.00024+ 
-0.00011 
-0.00001 

-0.00039*** 
-0.00057 

-0.00028*** 
 0.00019 
-2.16E-6 
0.000020 
0.000037 
-0.00006 
-0.00005 
-0.00015* 

-0.00027** 
-0.00013 

 0.00027** 
 0.00025* 
0.000030 
8.109E-6 
-0.00016+ 
0.000083 
0.000085 

 0.00023** 
-0.00017* 

-0.00025*** 
0.000091 
0.000069 
-0.00012+ 
-0.00004 

 0.00028*** 
 0.00011+ 

-0.00016*** 
0.000086 
0.000081 
0.000086 

-0.00031*** 
 0.00040*** 
-0.00030*** 
-0.00049*** 
 0.00042*** 
-0.00059*** 

-8.32E-6 

NC -0.00009 
 0.00010 
-0.00029 
-0.00005 
0.00009 
-0.00016 

-0.00034+ 
-0.00060*** 

-0.00053 
-0.00033*** 

 0.00029 
0.00007 
 0.00030 
-0.00013 
0.00007 
7.736E-6 
-0.00009 

-0.00039** 
-0.00006 
0.00009 
 0.00017 
-0.00014 
 0.00011 
-4.12E-6 

 0.00023** 
 0.00040*** 
 0.00041*** 

-0.00015 
-0.00015 
 0.00015 

 0.00010+ 
-0.00011 

-0.00080*** 
0.00038*** 

-0.00008 
-0.00012+ 
0.00004 
-0.00005 
0.00007 
-0.00019 
0.00004 
-0.00010 

-0.00044*** 
 0.00065*** 
-0.00043*** 
7.9997E-6 

NC 0.00060 
0.00034 
0.00008 

-0.00226*** 
-0.00024 

 0.00065** 
-0.00023 

-0.00103*** 
-0.00031 

-0.00038** 
-0.00002 
0.000074 
-0.00011 
-0.00061 
-0.00002 
-0.00005 

-0.00054*** 
-0.00047* 
-0.00014 
-0.00015 
 0.00011 
-0.00024 

-0.00045* 
-0.00008 
-0.00045 
0.000058 
-0.00005 

 0.00066*** 
 0.00046** 
 0.00101** 
-0.00007 
-0.00026 

-0.00080*** 
 0.00030** 
-0.00043* 

 0.00043*** 
-0.00004 

 0.00044** 
-0.00030 
-0.00037 
-0.00037 

 0.00105*** 
 0.00088*** 
 0.00105*** 
-0.00074*** 

-0.00003 

NC 
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USB  
WFC  

 0.00047*** 
0.00012 

-8.296E-6 
 0.00050*** 

 0.00066+ 
0.00026 

Joint F-
statistic 

5.10     
(<.0001) 

 4.48    
(<.0001) 

 143.54 
(<.0001) 

 

Notes: ***=significant at 1% level, **=significant at 5% level, *=significant at 10% level, +=significant 
at 20% level. All specifications included firm specific intercepts and firm specific market returns (firm 
FE*market returns, yielding the firm’s beta in a CAPM model), and firm specific market shocks on other 
firms (whose coefficients are included in the next table).  All specifications were estimated as Garch(1,1) 
processes (on the error terms). 
 

Table B.A3a. Network Shifts: Aggregated Coefficients, No Day Fixed Effects vs Day Fixed Effects  
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 0.0011051 NC 0.00129774 NC 0.001854 NC 
Ins: ∑ neg coeff -0.002522 NC -0.0032041 NC -0.00733 NC 
Ins: ∑|coeff| 0.0036273 NC 0.00450186 NC 0.009184 NC 
Bank: ∑pos coeff 0.002611 NC 0.002978 NC 0.007258 NC 
Bank: ∑neg coeff -0.002438 NC -0.0026283 NC -0.00391 NC 
Bank: ∑|coeff| 0.0050493 NC 0.0056063 NC 0.011168 NC 

Notes: Cell entries are the respective sums from Table B.A3.  NC: Not converge 
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Table B.A4. Stock Market Process-dynamics from Financial Shocks:; 2011-2016 
 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No day FE Day FE No day FE Day FE No day FE Day FE 
Lag1 
Lag2 
Lag3 
ACE 
AET 
AFL 
ALL 
AON 
BRK 
CB  
CI  
CNA 
GNW 
HIG 
HUM 
LNC 
MFC 
PFG 
PGR  
PRE  
PRU  
RE   
SLF  
TRV  
UNH  
UNM  
XL   
BAC  
BAP  
BBT  
BK   
BMO  
BNS  
BSBR 
C    
CM   
HBC  
HDB  
IBN  
KEY  
MTB  
PNC  
RF   
RY   
STD  
STI  
STT  

-0.00898*** 
-0.00029 

-0.00814*** 
   0.886+ 
   0.238 

   1.479_ 
   4.104* 
  -0.299 

  -0.846+ 
  -2.138** 

0.090 
 1.734 
-0.187 

 1.095** 
-0.284 

-1.721+ 
-1.215** 
-0.537+ 
-0.706 
-0.301 
-0.193 
 3.758* 
 0.478 
 0.979 
 0.418* 
 0.311 
 1.359 
-0.617 
-0.279 

 1.285*** 
 0.037 
-0.174 
-0.019 
-0.499 

 0.987*** 
 1.275*** 

-0.165 
-0.677*** 

-0.148 
-0.127 

 0.939*** 
-1.208*** 
 1.958** 
-3.184+ 

-2.293*** 
 3.054*** 
-0.936*** 

NC -0.0106*** 
0.00050 

-0.00873*** 
  0.500 

 -0.848+ 
  0.739 

  4.071* 
 -0.521 
  0.342 
 -1.119 
  0.025 
  1.689 
 -0.336 
 -0.229 
 -0.347 

 -2.039+ 
-1.261+ 
-1.585 
-0.523 
-0.155 
-0.029 
 3.825* 
-0.112 
 1.772+ 
 0.268 
 1.139 
 1.530 
-0.687 
 0.221 
 0.161 

 0.803** 
 1.434*** 
-2.174*** 
-0.886+ 
-0.557+ 

 2.426*** 
-0.672** 
-0.786** 
-0.525 
 0.505 
-0.071 

-0.968*** 
 2.118** 
-3.488+ 

-2.814*** 
 2.807** 

-2.436*** 

NC   -0.0108*** 
-0.00117 

  -0.0114*** 
   0.269 
  -0.517 
   1.753+ 
   3.892* 
   0.140 
  -0.276 
  -0.163 
-1.372 
 0.043 
 0.051 
-0.079 
-0.744 
-1.452 

-2.685+ 
-0.728 
-0.273 
 0.672 
-0.740 

 4.069*** 
-1.122 
 0.888 

-1.692*** 
 1.869 
 0.482 
-0.642 
-0.562 

 1.463** 
 3.025*** 
-3.267*** 
 9.291*** 
-1.232** 

 0.356 
 3.527*** 
 0.314+ 
 0.235 

-0.662+ 
-0.640 

-1.034+ 
-1.019 

 1.756*** 
-3.202+ 

-2.992*** 
 1.955* 

-3.158*** 

NC 
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TD   
UBS  
USB  
WFC  

 0.780** 
-0.058 

-1.620*** 
 2.170 

 2.856*** 
 0.156 
 0.894* 
2.569 

 1.670** 
-0.214 
 0.790 
 1.166 

F-joint 
statistic 

4.36 
(<.0001) 

 6.36 
(<.0001) 

 9.36 
(<.0001) 

 

Arch0 5.67E-6***  5.72E-6***  2.59E-6***  
Arch1 0.0750***     0.0737***     0.0442***  
Garch1 0.8935***     0.8947***     0.9415***  

Notes: 73,630 observations. ***=significant at 1% level, **=significant at 5% level, *=significant at 10% 
level, +=significant at 20% level. All specifications included firm specific intercepts and firm specific 
market returns (“firm FE*market returns”, yielding the firm’s beta from a CAPM perspective), and firm 
specific market shocks on other firms (whose coefficients are included in the next table).  All 
specifications were estimated as Garch(1,1) processes (on the error terms).We estimated our model using 
5 alternative ways of measuring market returns---none of them made any difference for the results, so we 
present the results with only the VWRETD variable (VWRETD is the Value weighted return with 
dividends for all CRSP stocks). 
 
Table B.A4a. Network Shifts: Aggregated Coefficients, With and Without Controls for Trends (Day FE) 

 2 Std. Dev. Shocks 3 Std. Dev. Shocks 4 Std. Dev. Shocks 
 No Day FE Day FE No Day FE Day FE No Day FE Day FE 
Ins: ∑ pos coeff 16.929 NC 15.90 NC 14.128 NC 
Ins: ∑ neg coeff -8.427 NC -9.104 NC -11.843 NC 
Ins: ∑|coeff| 25.356 NC 25.004 NC 25.971 NC 
Bank: ∑pos coeff 12.485 NC 16.95 NC 25.548 NC 
Bank: ∑neg coeff -12.004 NC -16.064 NC -18.624 NC 
Bank: ∑|coeff| 24.489 NC 33.014 NC 44.172 NC 

Notes: Cell entries are the respective sums from Table B.A4.  NC: Not converge 
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